- Код статьи
- 10.31857/S0044457X24090057-1
- DOI
- 10.31857/S0044457X24090057
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 9
- Страницы
- 1254-1266
- Аннотация
- Высокотемпературным твердофазным синтезом получены керамические образцы многокомпонентных фторидов Na3CaMg3AlF14 и NaCaMg2F7 со структурой кубического пирохлора, легированных ионами европия. Сравнение рентгенограмм полученных соединений показало, что для фторида Na3CaMg3AlF14 получена новая полиморфная модификация со структурой кубического пирохлора, отличная от описанной в литературе фазы этого соединения с ромбоэдрической структурой. Добавление фторида NH4(HF2) перед последним отжигом обеспечивает восстановительные условия для стабилизации ионов европия исключительно в валентном состоянии 2+. Ионы Eu2+ в синтезированных фторидных матрицах испускают люминесценцию с пиком полосы около 395 нм, обусловленную межконфигурационными переходами 4f 65d–4f 7. В данных матрицах ионы Eu2+ образуют оптические центры преимущественно одного типа, что обеспечивает достаточно узкую ширину полосы 4f65d–4f 7-люминесценции (~30 нм). Ионы Eu2+ в синтезированных керамиках испускают также линейчатую люминесценцию с основной линией при ~362 нм, связанную с внутриконфигурационными переходами 4f 7–4f 7 из нижайшего возбужденного состояния 6P7/2 в основное состояние 8S7/2. Синтезированные керамики демонстрируют достаточно высокую температурную стабильность 4f 65d–4f7-люминесценции ионов Eu2+ с температурами термического тушения T1/2 = 504 и 543 K для Na3CaMg3AlF14:Eu2+ (1.0 ат. %) и NaCaMg2F7:Eu2+ (0.5 ат. %) соответственно. Это свойство может представлять интерес для практического применения указанных люминофоров. Дополнительный отжиг керамик в атмосфере аргона с добавлением NaHF2 вместо NH4(HF2) приводит к частичной конверсии ионов европия из двухвалентного состояния в трехвалентное. Как результат, в красной области спектра появляется серия узких линий люминесценции, обусловленных внутриконфигурационными переходами 4f 6–4f 6 (5D0 → 7FJ) в ионах Eu3+.
- Ключевые слова
- керамика люминесценция структура пирохлора ионы европия
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 11
Библиография
- 1. Fang M.-H., Leaño Jr.J.L., Liu R.-S. // ACS Energy Lett. 2018. V. 3. № 10. P. 2573. https://doi.org/10.1021/acsenergylett.8b01408
- 2. Hariyani S., Sójka M., Setlur A., Brgoch J. // Nat. Rev. Mater. 2023. V. 8. № 11. P. 759. https://doi.org/10.1038/s41578-023-00605-6
- 3. Liao H., Zhao M., Molokeev M.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 36. P. 11728. https://doi.org/10.1002/anie.201807087
- 4. Liu R.S. // Chem. Mater. 2023. V. 35. № 16. P. 6179. https://doi.org/10.1021/acs.chemmater.3c01743
- 5. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786 (83)90001-8
- 6. Holliday K., Finkeldei S., Neumeier S. et al. // J. Nucl. Mater. 2013. V. 433. № 1–3. P. 479. https://dx.doi.org/10.1016/j.jnucmat.2012.10.028
- 7. Garcia M.A.P., Gupta S.K., Mao Y. // J. Mol. Struct. 2020. V. 1220. P. 128688. https://doi.org/10.1016/j.molstruc.2020.128688
- 8. Gupta S.K., Nigam S., Zuniga J.P., Mao Y. // Mater. Today Chem. 2022. V. 24. P. 100931. https://doi.org/10.1016/j.mtchem.2022.100931
- 9. Berwal U., Singh V., Sharma R. // J. Lumin. 2023. V. 257. P. 119687. https://doi.org/10.1016/j.jlumin.2023.119687
- 10. Sidey V. // Z. Kristallogr. 2017. V. 232. № 10. P. 729. https://doi.org/10.1515/zkri-2017-2057
- 11. Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Yu. et al. // J. Lumin. 2024. V. 272. P. 120646. https://doi.org/10.1016/j.jlumin.2024.120646
- 12. Mumme W.G., Gray I.E., Birch W.D. et al. // Am. Mineral. 2010. V. 95. № 5-6. P. 736.
- 13. Oliveira E.A., Guedes I., Ayala A.P. et al. // J. Solid State Chem. 2004. V. 177. № 8. P. 2943. https://doi.org/10.1016/j.jssc.2004.04.055
- 14. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1272. https://doi.org/10.1107/S0021889811038970
- 15. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
- 16. Ryan F.M., Lehmann W., Feldman D.W., Murphy J. // J. Electrochem. Soc. 1974. V. 121. № 11. P. 1475. https://doi.org/10.1149/1.2401714
- 17. Henderson B., Imbusch G.F. Optical Spectroscopy of Inorganic Solids. Oxford: Clarendon Press, 1989.
- 18. Adachi S. // ECS J. Solid State Sci. Technol. 2023. V. 12. № 1. P. 016002. https://doi.org/10.1149/2162-8777/acaeb9
- 19. Meijerink A. // J. Lumin. 1993. V. 55. № 3. P. 125. https://doi.org/10.1016/0022-2313 (93)90033-J
- 20. Ellens A., Meijerink A., Blasse G. // J. Lumin. 1994. V. 59. № 5. P. 293. https://doi.org/10.1016/0022-2313 (94)90056-6
- 21. Wegh R.T., Meijerink A. // Phys. Rev. B. 1999. V. 60. № 15. P. 10820. https://doi.org/10.1103/PhysRevB.60.10820
- 22. Kirm M., Stryganyuk G., Vielhauer S. et al. // Phys. Rev. B. 2007. V. 75. № 7. P. 075111. https://doi.org/10.1103/PhysRevB.75.075111
- 23. Belsky A.N., Krupa J.C. // Displays. 1999. V. 19. № 4. P. 185. https://doi.org/10.1016/S0141-9382 (98)00049-3
- 24. Joos J.J., Seijo L., Barandiarán Z. // J. Phys. Chem. Lett. 2019 V. 10. № 7. P. 1581. https://doi.org/10.1021/acs.jpclett.9b00342