RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Carboxonium derivatives of closo-decaborate anion [2,6-B10H8O2CC6H4R] based on aromatic carboxylic acids: synthesis and physicochemical properties

PII
10.31857/S0044457X24090043-1
DOI
10.31857/S0044457X24090043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 9
Pages
1245-1253
Abstract
The series of carboxonium derivatives of the closo-decaborate anion of the general form [2,6-B10H8O2CC6H4R], R=F, CH3, C3H7, C6H5 was obtained. To obtain the target systems, the interaction of the [B10H11] anion with aromatic carboxylic acids was used. This process took place in two stages through the formation of a monosubstituted derivative of the general form [2-B10H9OC(OH)C6H4R], R=F, CH3, C3H7, C6H5, followed by intramolecular cyclization, leading to the formation of the target disubstituted carboxonium derivatives. The structure of the [2,6-B10H8O2CC6H4-C6H5] anion was confirmed by X-ray diffraction analysis. The resulting carboxonium derivatives are capable of protonation to form neutral systems of the general form [2,6-B10H8O2CC6H4R(Hfac)]0, R=F, CH3, C3H7, C6H5. When a protonated carboxonium derivative of acetonitrile is added to a solution, a trisubstituted derivative of the general form [B10H7O2CC6H4R(NCCH3)]0 is formed.
Keywords
клозо-бораты карбоксониевые производные кластеры бора
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Hargittai I., Schultz G., Tremmel J. et al. // J.Am. Chem. Soc. 1983. V. 105. № 9. P. 2895. https://doi.org/10.1021/ja00347a061
  2. 2. Moss R.A. // J. Org. Chem. 2017. V. 82. № 5. P. 2307. https://doi.org/10.1021/acs.joc.6b02876
  3. 3. Schneider H. // J. Phys. Org. Chem. 2018. V. 31. № 7. https://doi.org/10.1002/poc.3846
  4. 4. Prakash G.K.S. // J. Org. Chem. 2006. V. 71. № 10. P. 3661. https://doi.org/10.1021/jo052657e
  5. 5. Takami M., Ohshima Y., Yamamoto S. et al. // Faraday Discuss. Chem. Soc. 1988. V. 86. P. 1. https://doi.org/10.1039/dc9888600001
  6. 6. Grommet A.B., Feller M., Klajn R. // Nat. Nanotechnol. 2020. V. 15. № 4. P. 256. https://doi.org/10.1038/s41565-020-0652-2
  7. 7. Wiedemann S.H., Kang D.-H., Bergman R.G. et al. // J.Am. Chem. Soc. 2007. V. 129. № 15. P. 4666. https://doi.org/10.1021/ja0682428
  8. 8. Vasilyev A.V. // Russ. Chem. Rev. 2013. V. 82. № 3. P. 187. https://doi.org/10.1070/RC2013v082n03ABEH004345
  9. 9. McClelland R.A. // Org. React. Mech. Ser. 2010. P. 203. https://doi.org/10.1002/9780470669587.ch7
  10. 10. Moss R.A. // J. Phys. Org. Chem. 2014. V. 27. № 5. P. 374. https://doi.org/10.1002/poc.3290
  11. 11. Lu M., Allemann O., Xu J. et al. // Org. Chem. Front. 2019. V. 6. № 15. P. 2640. https://doi.org/10.1039/C9QO00633H
  12. 12. McNamee R.E., Frank N., Christensen K.E. et al. // Sci. Adv. 2024. V. 10. № 2. https://doi.org/10.1126/sciadv.adj9695
  13. 13. Borch R.F. // J.Am. Chem. Soc. 1968. V. 90. № 19. P. 5303. https://doi.org/10.1021/ja01021a062
  14. 14. Wagen C.C., Jacobsen E.N. // Org. Lett. 2022. V. 24. № 48. P. 8826. https://doi.org/10.1021/acs.orglett.2c03622
  15. 15. Qiu L., Su M., Wen Z. et al. // Eur. J. Org. Chem. 2019. V. 2019. № 18. P. 2914. https://doi.org/10.1002/ejoc.201900338
  16. 16. Olah G.A., Prakash G.K.S., Sommer J. // Science. 1979. V. 206. № 4414. P. 13. https://doi.org/10.1126/science.206.4414.13
  17. 17. Prakash G.K.S., Bae C., Rasul G. et al. // J. Org. Chem. 2002. V. 67. № 4. P. 1297. https://doi.org/10.1021/jo0109974
  18. 18. Laali K.K., Okazaki T., Hansen P.E. // J. Org. Chem. 2000. V. 65. № 12. P. 3816. https://doi.org/10.1021/jo0001939
  19. 19. Olah G.A., Burrichter A., Rasul G. et al. // J. Org. Chem. 1996. V. 61. № 6. P. 1934. https://doi.org/10.1021/jo9516493
  20. 20. Beringer F., Galton S. // J. Org. Chem. 1967. V. 32. № 8. P. 2630. https://doi.org/10.1021/jo01283a602
  21. 21. Mezheritskaya L.V., Dorofeenko G.N. // Chem. Heterocycl. Compd. 1975. V. 11. № 7. P. 761. https://doi.org/10.1007/BF00497290
  22. 22. Paulsen H., Höhne H., Durette P.L. // Chem. Ber. 1976. V. 109. № 2. P. 597. https://doi.org/10.1002/cber.19761090222
  23. 23. Paulsen H., Dammeyer R. // Chem. Ber. 1973. V. 106. № 7. P. 2324. https://doi.org/10.1002/cber.19731060729
  24. 24. Devillard M., Regnier V., Pecaut J. et al. // Org. Chem. Front. 2019. V. 6. № 18. P. 3184. https://doi.org/10.1039/C9QO00298G
  25. 25. Hansmann M.M., Melen R.L., Rominger F. et al. // Chem. Commun. 2014. V. 50. № 55. P. 7243. https://doi.org/10.1039/C4CC01370K
  26. 26. Stogniy M.Y., Anufriev S.A., Sivaev I.B. // Inorganics. 2023. V. 11. № 2. P. 72. https://doi.org/10.3390/inorganics11020072
  27. 27. Stogniy M.Y., Anufriev S.A., Bogdanova E.V. et al. // Dalton Trans. 2024. V. 53. № 7. P. 3363. https://doi.org/10.1039/D3DT03549B
  28. 28. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  29. 29. Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2019. P. 983. https://doi.org/10.1080/10426507.2019.1631312
  30. 30. Šícha V., Plešek J., Kvíčalová M. et al. // Dalton Trans. 2009. № 5. P. 851. https://doi.org/10.1039/B814941K
  31. 31. Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. № 8. P. 977. https://doi.org/10.1039/b715363e
  32. 32. Las’kova Y.N., Serdyukov A.A., Sivaev I.B. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 621. https://doi.org/10.1134/S0036023623600612
  33. 33. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
  34. 34. Mahfouz N., Ghaida F.A., El Hajj Z. et al. // ChemistrySelect. 2022. V. 7. № 21. https://doi.org/10.1002/slct.202200770
  35. 35. Golub I.E., Filippov O.A., Belkova N.V. et al. // Molecules. 2021. V. 26. № 12. https://doi.org/10.3390/molecules26123754
  36. 36. Binder H., Brellochs B., Frei B. et al. // Chem. Ber. 1989. V. 122. № 6. P. 1049. https://doi.org/10.1002/cber.19891220606
  37. 37. Plešek J., Grüner B., Báča J. et al. // J. Organomet. Chem. 2002. V. 649. № 2. P. 181. https://doi.org/10.1016/S0022-328X (02)01115-4
  38. 38. Safronova E.F., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2013. V. 452. № 2. https://doi.org/10.1134/S0012500813110013
  39. 39. Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 11. P. 1247. https://doi.org/10.1134/S0036023614110047
  40. 40. Klyukin I.N., Zhdanov A.P., Matveev E.Y. et al. // Inorg. Chem. Commun. 2014. V. 50. P. 28. https://doi.org/10.1016/j.inoche.2014.10.008
  41. 41. Klyukin I.N., Kolbunova A.V., Novikov A.S. et al. // Molecules. 2023. V. 28. № 4. https://doi.org/10.3390/molecules28041757
  42. 42. Kolbunova A.V., Klyukin I.N., Novikov A.S. et al. // New J. Chem. 2024. https://doi.org/10.1039/d4nj01048e
  43. 43. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  44. 44. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  45. 45. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  46. 46. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  47. 47. Imai Y., Kamon K., Tajima N. et al. // J. Lumin. 2010. V. 130. № 6. P. 954. https://doi.org/10.1016/j.jlumin.2010.01.004
  48. 48. Klyukin I.N., Kolbunova A.V., Novikov A.S. et al. // Inorganics. 2023. V. 11. № 5. https://doi.org/10.3390/inorganics11050201
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library