RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Polyol synthesis of silver nanowires and their application for transparent electrodes fabrication

PII
10.31857/S0044457X24090023-1
DOI
10.31857/S0044457X24090023
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 9
Pages
1223-1232
Abstract
Polyol synthesis of thin silver nanowires has been studied and their suitability for the formation of transparent electrodes has been shown. The influence of stepwise heating of the reaction system on the position and shape of the absorption band associated with the surface plasmon resonance of the formed silver nanostructures has been determined. Using X-ray diffraction analysis it was found that the material does not contain crystalline impurities and has a face-centered cubic lattice. According to the scanning and transmission electron microscopy data, the main fraction is represented by elongated nanostructures with 10–15 μm length (however, there are also structures with length up to 20 μm) characteristic for silver nanowires of arc-shaped type. It is shown that the Ag nanowires obtained are quite thin (diameter is about 35–45 nm). Also in the composition of the material some amount of microrods of 1–3 µm length is observed, the diameter of which grows from 70 to 150 nm with decreasing length. In smaller quantities there is also an admixture of zero-dimensional particles, which are polyhedrons of various complexity. Atomic force microscopy has been used to study the surface of the film based on the obtained silver nanowires and the diameter of individual nanowire has been estimated. The optical properties and surface resistivity of the films based on the obtained silver nanowires were examined. It was found that the increase in transmittance at 550 nm from 73.9 to 90.3% is accompanied by an increase in the resistance value from 25 to 146 Ω/sq.
Keywords
полиольный синтез серебряные нанопроволоки одномерные наноструктуры поверхностный плазмонный резонанс тонкие пленки прозрачные электроды
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Shukla D., Liu Y., Zhu Y. // Nanoscale. 2023. V. 15. № 6. P. 2767. https://doi.org/10.1039/D2NR05840E
  2. 2. Zhang L., Song T., Shi L. et al. // J. Nanostructure Chem. 2021. V. 11. № 3. P. 323. https://doi.org/10.1007/s40097-021-00436-3
  3. 3. Yang J., Yu F., Chen A. et al. // Adv. Powder Mater. 2022. V. 1. № 4. P. 100045. https://doi.org/10.1016/j.apmate.2022.100045
  4. 4. Shen J.-J. // Synth. Met. 2021. V. 271. P. 116582. https://doi.org/10.1016/j.synthmet.2020.116582
  5. 5. Zhao W., Jiang M., Wang W. et al. // Adv. Funct. Mater. 2021. V. 31. № 11. https://doi.org/10.1002/adfm.202009136
  6. 6. Kiruthika S., Sneha N., Gupta R. // J. Mater. Chem. A. 2023. V. 11. № 10. P. 4907. https://doi.org/10.1039/D2TA07836H
  7. 7. Huang L., Chen X., Wu X. et al. // Flex. Print. Electron. 2023. V. 8. № 2. P. 025021. https://doi.org/10.1088/2058-8585/acdb84
  8. 8. Lee J., Lee Y., Ahn J. et al. // J. Mater. Chem. С. 2017. V. 5. № 48. P. 12800. https://doi.org/10.1039/C7TC04840H
  9. 9. Wang Y., Kong J., Xue R. et al. // Nano Res. 2023. V. 16. № 1. P. 1558. https://doi.org/10.1007/s12274-022-4757-9
  10. 10. Oh D.E., Lee C.-S., Kim T.W. et al. // Biosensors. 2023. V. 13. № 7. P. 704. https://doi.org/10.3390/bios13070704
  11. 11. Jang J., Kim J., Shin H. et al. // Sci. Adv. 2021. V. 7. № 14. https://doi.org/10.1126/sciadv.abf7194
  12. 12. Nguyen V.H., Papanastasiou D.T., Resende J. et al. // Small. 2022. V. 18. № 19. https://doi.org/10.1002/smll.202106006
  13. 13. Elsokary A., Soliman M., Abulfotuh F. et al. // Sci. Rep. 2024. V. 14. № 1. P. 3045. https://doi.org/10.1038/s41598-024-53286-8
  14. 14. Kumar D., Stoichkov V., Brousseau E. et al. // Nanoscale. 2019. V. 11. № 12. P. 5760. https://doi.org/10.1039/C8NR07974A
  15. 15. Fan Z., Wang J., He L. et al. // Langmuir. 2023. V. 39. № 30. P. 10651. https://doi.org/10.1021/acs.langmuir.3c01264
  16. 16. Preston C., Fang Z., Murray J. et al. // J. Mater. Chem. С. 2014. V. 2. № 7. P. 1248. https://doi.org/10.1039/C3TC31726A
  17. 17. Zhu Y., Deng Y., Yi P. et al. // Adv. Mater. Technol. 2019. V. 4. № 10. https://doi.org/10.1002/admt.201900413
  18. 18. Liao Q., Hou W., Zhang J. et al. // Coatings. 2022. V. 12. № 11. P. 1756. https://doi.org/10.3390/coatings12111756
  19. 19. Shi L. // Micro Nano Lett. 2023. V. 18. № 1. https://doi.org/10.1049/mna2.12151
  20. 20. Hemmati S., Harris M.T., Barkey D.P. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/9341983
  21. 21. Duan X., Ding Y., Liu R. // Mater. Today Energy. 2023. V. 37. P. 101409. https://doi.org/10.1016/j.mtener.2023.101409
  22. 22. Wang Y.H., Yang X., Du D.X. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. № 14. P. 13238. https://doi.org/10.1007/s10854-019-01687-1
  23. 23. Fahad S., Yu H., Wang L. et al. // J. Mater. Sci. 2019. V. 54. № 2. P. 997. https://doi.org/10.1007/s10853-018-2994-9
  24. 24. Fiévet F., Ammar-Merah S., Brayner R. et al. // Chem. Soc. Rev. 2018. V. 47. № 14. P. 5187. https://doi.org/10.1039/C7CS00777A
  25. 25. Zhang P., Wyman I., Hu J. et al. // Mater. Sci. Eng., B. 2017. V. 223. P. 1. https://doi.org/10.1016/j.mseb.2017.05.002
  26. 26. Araki T., Jiu J., Nogi M. et al. // Nano Res. 2014. V. 7. № 2. P. 236. https://doi.org/10.1007/s12274-013-0391-x
  27. 27. Bergin S.M., Chen Y.-H., Rathmell A.R. et al. // Nanoscale. 2012. V. 4. № 6. P. 1996. https://doi.org/10.1039/c2nr30126a
  28. 28. Coskun S., Aksoy B., Unalan H.E. // Cryst. Growth Des. 2011. V. 11. № 11. P. 4963. https://doi.org/10.1021/cg200874g
  29. 29. Sun Y., Gates B., Mayers B. et al. // Nano Lett. 2002. V. 2. № 2. P. 165. https://doi.org/10.1021/nl010093y
  30. 30. Basarir F., De S., Daghigh Shirazi H. et al. // Nanoscale Adv. 2022. V. 4. № 20. P. 4410. https://doi.org/10.1039/D2NA00560C
  31. 31. Kaili Z., Yongguo D., Shimin C. // J. Nanosci. Nanotechnol. 2016. V. 16. № 1. P. 480. https://doi.org/10.1166/jnn.2016.12158
  32. 32. Lai X., Feng X., Zhang M. et al. // J. Nanoparticle Res. 2014. V. 16. № 3. P. 2272. https://doi.org/10.1007/s11051-014-2272-y
  33. 33. Jiu J., Araki T., Wang J. et al. // J. Mater. Chem. A. 2014. V. 2. № 18. P. 6326. https://doi.org/10.1039/C4TA00502C
  34. 34. Mao H., Feng J., Ma X. et al. // J. Nanoparticle Res. 2012. V. 14. № 6. P. 887. https://doi.org/10.1007/s11051-012-0887-4
  35. 35. Lee E.-J., Chang M.-H., Kim Y.-S. et al. // APL Mater. 2013. V. 1. № 4. P. 042118. https://doi.org/10.1063/1.4826154
  36. 36. Ha H., Amicucci C., Matteini P. et al. // Colloid Interface Sci. Commun. 2022. V. 50. P. 100663. https://doi.org/10.1016/j.colcom.2022.100663
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library