RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Features of the Synthesis of InGaMgO4 from Nitrate-Organic Precursors and the Study of Its’ Physical Properties

PII
10.31857/S0044457X24080012-1
DOI
10.31857/S0044457X24080012
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 8
Pages
1095-1103
Abstract
This work reports on the possibility of producing the InGaMgO4 oxide by two-stage heat treatment of glycine-, starch- and PVA-nitrate precursors. The products formed as a result of their heating at low temperatures (≈ 90°С) were studied by powder X-ray diffraction. It was found that the powder formed from the glycine-nitrate precursor contains nanocrystalline In2O3, and drying of the polymer-nitrate compositions leads to the production of a thermally stable X-ray amorphous product. Its' annealing at temperatures above 800°C allows synthesizing InGaMgO4 powder free of impurity phases. High-temperature treatment of the powder formed from the glycine-nitrate precursor also leads to the production of InGaMgO4, but does not remove the In2O3 impurity. Using scanning electron microscopy, it was found that single-phase InGaMgO4 powders synthesized from polymer-nitrate precursors have a similar grain structure but differ in grain size distribution. Presumably, this difference is due to the structural features of starch and PVA macromolecules used for the preparation of precursors. The InGaMgO4 oxide was characterized using differential scanning calorimetry, Raman and diffuse reflectance spectroscopy. The value of its' band gap energy Eg was determined using the Tauc method.
Keywords
оксид индия-галлия-магния ромбоэдрическая сингония слоистая структура нитрат-органические прекурсоры полимеры глицин горение теплоемкость энергия ширины запрещенной зоны
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Orita M., Takeuchi M., Sakai H. et al. // Jpn. J. Appl. Phys. 1995. V.34. № 11B. P. 1550. http://doi.org/10.7567/JJAP.34.L1550
  2. 2. Moriga T., Sakamoto T., Sato Y. et al. // J. Solid State Chem. 1999. V. 142. № 1. P. 206. https://doi.org/10.1006/jssc.1998.8036
  3. 3. Murat A., Medvedeva J.E. // Phys. Rev. B. 2012. V. 85. № 15. P. 155101. http://doi.org/10.1103/PhysRevB.85.155101
  4. 4. Grajczyk R., Subramanian M.A. // Prog. Solid State Chem. 2015. V. 43. № 1–2. P. 37. http://doi.org/10.1016/j.progsolidstchem.2014.09.001 Kimizuka N., Mohri T. // J. Solid State Chem. 1985. V. 60. № 3. P. 382. https://doi.org/10.1016/0022-4596 (85)90290-7
  5. 5. Kimizuka N., Yamazaki S. Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO. Fundamentals. John Wiley & Sons Ltd, 2017.
  6. 6. Tanaka Y., Wada K., Kobayashi Y. et al. // CrystEngComm. 2019. V. 21. № 19. P. 2985. https://doi.org/10.1039/C9CE00007K
  7. 7. Lo C., Hsieh T. // Ceram. Int. 2012. V. 38. № 5. P. 3977. https://doi.org/10.1016/j.ceramint.2012.01.052
  8. 8. Troughton J., Atkinson D. // J. Mater. Chem. C. 2019. V. 7. № 19. P. 12388. https://doi.org/10.1039/C9TC03933C
  9. 9. Blasse G., Dirksen G.J., Kimizuka N. et al. // Mater. Res. Bull. 1986. V. 21. № 9. P. 1057. https://doi.org/10.1016/0025-5408 (86)90221-7
  10. 10. Meng X., Wang Z., Qiu K. et al. // Cryst. Growth Des. 2018. V. 18. № 8. P. 4691. https://doi.org/10.1021/acs.cgd.8b00672
  11. 11. Patil K.C., Hedge M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd, 2008.
  12. 12. Rogachev A.S., Mukasyan A.S. // Combust. Explos. Shock Waves. 2010. V. 46. P. 243. https://doi.org/10.1007/s10573-010-0036-2
  13. 13. Alves A.K., Bergmann C.P., Berutti F.A. Novel Synthesis and Characterization of Nanostructured Materials. Heidelberg: Springer Berlin, 2013.
  14. 14. Carlos E., Martins R. et al. // Chem. Eur. J. 2020. V. 26. № 42. P. 9099. https://doi.org/10.1002/chem.202000678
  15. 15. Chick L.A., Pederson L.R., Maupin G.D. et al. // Mater. Lett. 1990. V. 10. № 1–2. P. 6. https://doi.org/10.1016/0167-577X (90)90003-5
  16. 16. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. et al. // J. Sol-Gel Sci. Technol. 2020. V. 93. P. 251. https://doi.org/10.1007/s10971-019-05189-8
  17. 17. Novitskaya E., Kelly J.P., Bhaduri S. et al. // Int. Mater. Rev. 2021. V. 66. № 3. P. 188. https://doi.org/10.1080/09506608.2020.1765603
  18. 18. Mastalska-Poplawska J., Sikora M., Izak P. et al. // J. Sol-Gel Sci. Technol. 2020. V. 96. P. 511. https://doi.org/10.1007/s10971-020-05404-x
  19. 19. Jiu J., Ge Y., Li X. et al. // Mater. Lett. 2002. V. 54. № 54. P. 260. https://doi.org/10.1016/S0167-577X (01)00573-0
  20. 20. Klein L., Aparicio M., Jitianu A. Handbook of Sol-Gel Science and Technology. Springer Cham, 2018.
  21. 21. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 13. P. 6559. https://doi.org/10.1016/j.jeurceramsoc.2021.05.063
  22. 22. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // Ceram. Int. 2023. V. 49. № 1. P. 179. https://doi.org/10.1016/j.ceramint.2022.08.326
  23. 23. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
  24. 24. Golam A.T.M., Eakman J.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577. https://doi.org/10.1021/ie00039a053 https://www. .chem.msu.su/cgi-bin/tkv.pl?show= welcom.html
  25. 25. Kelly J.T., Wexler A.S. // J. Geophys. Res. 2005. V. 110. № D11201. https://doi.org/10.1029/2004JD005583
  26. 26. Dorofeeva O.V., Ryzhova O.N. // J. Chem. Thermodyn. 2009. V. 41. № 4. P. 433. https://doi.org/10.1016/j.jct.2008.12.001
  27. 27. Varma A., Mukasyan A.S., Rogachev A.S. et al. // Chem. Rev. 2016. V. 116. № 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  28. 28. Zhang C., Pei Y., Zhao L. et al. // J. Eur. Ceram. Soc. 2014. V. 34. № 1. P. 63. https://doi.org/10.1016/j.jeurceramsoc.2013.08.001
  29. 29. Wu M., Hsiao K., Lu H. // Mater. Chem. Phys. 2015. V. 162. P. 386. http://doi.org/10.1016/j.matchemphys.2015.06.003
  30. 30. Makula P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018. V. 9. № 23. P. 6814. https://doi.org/10.1021/acs.jpclett.8b02892
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library