RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Co-leaching of Li, Fe, Al, and Cu from active materials of LFP batteries

PII
10.31857/S0044457X24070158-1
DOI
10.31857/S0044457X24070158
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 7
Pages
1063-1072
Abstract
Co-leaching of the cathode and anode materials of lithium iron phosphate (LFP) batteries was studied. It was determined that the nature of mineral acid (nitric, sulfuric, hydrochloric) affects the degree of leaching of Li, Fe, Al, and Cu. Hydrochloric acid was chosen as the most suitable leaching agent. The effect of the following parameters of the leaching of active materials was investigated: process duration, temperature, hydrochloric acid concentration, and solid : liquid ratio. For complete leaching of copper, hydrogen peroxide was used as an oxidizing agent. The conditions for the most complete extraction of target elements were found to be 25°C, 2 h, 2 M hydrochloric acid solution, 0.05 M H2O2 solution, solid : liquid ratio 1 : 50. The possibility of sufficiently complete leaching of the main elements from spent LFP batteries at room temperature was demonstrated.
Keywords
выщелачивание литий-ионные аккумуляторы катод анод ионы металлов
Date of publication
15.07.2024
Year of publication
2024
Number of purchasers
0
Views
45

References

  1. 1. The United Nations // 2015.
  2. 2. The Global EV Outlook // 2023. https://www.iea.org/reports/global-ev-outlook-2023
  3. 3. Fallah N., Fitzpatrick C. // J. Energy Storage. 2023. V. 68. P. 107740. https://doi.org/10.1016/j.est.2023.107740
  4. 4. Fan T., Liang W., Guo W. et al. // J. Energy Storage. 2023. V. 71. P. 108126. https://doi.org/10.1016/j.est.2023.108126
  5. 5. Hu J., Huang W., Yang L. et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. https://doi.org/10.1039/D0NR03776A
  6. 6. Yao Y., Zhu M., Zhao Z. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. № 11. P. 13611. https://doi.org/10.1021/acssuschemeng.8b03545
  7. 7. Davis K., Demopoulos G.P. // RSC Sustain. 2023. V. 1. № 8. P. 1932. https://doi.org/10.1039/D3SU00142C
  8. 8. Dobó Z., Dinh T., Kulcsár T. // Energy Reports. 2023. V. 9. P. 6362. https://doi.org/10.1016/j.egyr.2023.05.264
  9. 9. Zhou L.-F., Yang D., Du T. et al. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.578044
  10. 10. Vasconcelos D. da S., Tenório J.A.S., Botelho Junior A.B. et al. // Metals (Basel). 2023. V. 13. № 3. P. 543. https://doi.org/10.3390/met13030543
  11. 11. Aaltonen M., Peng C., Wilson B.P. et al. // Recycling. 2017. V. 2. № 4. P. 20. https://doi.org/10.3390/recycling2040020
  12. 12. Song D., Wang T., Liu Z. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 1. P. 107102. https://doi.org/10.1016/j.jece.2021.107102
  13. 13. Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1000. https://doi.org/10.31857/S0044457X22070091
  14. 14. Кожевникова А.В., Уварова Е.С., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2023. Т. 57. № 5. С. 553. https://doi.org/10.31857/S0040357123050111
  15. 15. Nicol M.J. // Hydrometallurgy. 2020. V. 193. P. 105328. https://doi.org/10.1016/j.hydromet.2020.105328
  16. 16. Huang Z., Chen T., Zhou Y. et al. // Processes. 2020. V. 8. № 12. P. 1534. https://doi.org/10.3390/pr8121534
  17. 17. Li H., Xing S., Liu Y. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. № 9. P. 8017. https://doi.org/10.1021/acssuschemeng.7b01594
  18. 18. Liu W., Li K., Wang W. et al. // Can. J. Chem. Eng. 2023. V. 101. № 4. P. 1831. https://doi.org/10.1002/cjce.24617
  19. 19. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Metals (Basel). 2021. V. 11. № 12. P. 1964. https://doi.org/10.3390/met11121964
  20. 20. Зиновьева И.В., Федоров А.Я., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2021. Т. 55. № 4. С. 480. https://doi.org/10.31857/S0040357121040199
  21. 21. Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Processes. 2022. V. 10. № 12. P. 2671. https://doi.org/10.3390/pr10122671
  22. 22. Dong L., Li Y., Shi P. et al. // J. Power Sources. 2023. V. 582. P. 233564. https://doi.org/10.1016/j.jpowsour.2023.233564
  23. 23. Binnemans K., Jones P.T. // J. Sustain. Metall. 2023. V. 9. № 2. P. 423. https://doi.org/10.1007/s40831-023-00681-6
  24. 24. Kadachi A.N., Al-Eshaikh M.A. // X-Ray Spectrometry. 2012. V. 41. № 5. P. 350. https://doi.org/10.1002/xrs.2412
  25. 25. Iwai M., Majima H., Awakura Y. // Hydrometallurgy. 1988. V. 20. № 1. P. 87. https://doi.org/10.1016/0304-386X (88)90028-X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library