- Код статьи
- 10.31857/S0044457X24060149-1
- DOI
- 10.31857/S0044457X24060149
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 6
- Страницы
- 919-927
- Аннотация
- Рассмотрено применение наностержней оксида цинка ZnO различной высоты, полученных гидротермальным синтезом, в качестве функциональных слоев для сенсибилизированных красителем солнечных элементов. Структура, морфология и оптические свойства слоев наностержней были исследованы методами рентгенофазового анализа, сканирующей электронной микроскопии, оптической спектроскопии. Изготовлены фотоаноды с использованием красителей на основе тиено[3,2-b]индола IS 4 и IS 9. Механизм адсорбции красителей и структур ZnO был изучен методом ИК-спектроскопии. С помощью фотоэлектрохимических измерений была исследована эффективность работы фотоанодов. Показана зависимость эффективности сенсибилизированных красителем солнечных элементов от длины наностержней. Максимальный результат преобразования света был получен для фотоанода со средней высотой наностержней 2.5 мкм и адсорбированным красителем IS 4.
- Ключевые слова
- гидротермальный синтез оксид цинка ZnO наностержни сенсибилизированные красителями солнечные элементы
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 11
Библиография
- 1. Kumar V., Gupta R., Bansal A. // ACS Appl. Nano Mater. 2021. V. 4. P. 6212. https://doi.org/10.1021/acsanm.1c01012
- 2. Kim K.H., Utashiro K., Abe Y., Kawamura M. // Materials. 2014. V. 7(4). P. 2522. https://doi.org/10.3390/ma7042522
- 3. Kumar R., Umar A., Kumar G. et al. // Mater. Sci. 2017. V. 52. P. 4743. https://doi.org/10.1007/s10853-016-0668-z
- 4. Shah M.A. // Mod. Phys. Lett. B. 2008. V. 22. № 26. P. 2617. https://doi.org/10.1142/S0217984908017126
- 5. Samanta P.K., Bandyopadhyay A.K. // Appl. Nanosci. 2012. V. 2. P. 111. https://doi.org/10.1007/s13204-011-0038-8
- 6. Li X., Li R., Feng X. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1386. https://doi.org/10.1134/s0036023623601307
- 7. Bouarroudj T., Aoudjit L., Nessaibia I. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1074. https://doi.org/10.1134/S0036024423050278
- 8. Duangnet L., Phuruangrat A., Thongtem T. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 721. https://doi.org/10.1134/S0036023622050114
- 9. Djurisic A.B., Chen X., Leung, Y.H. et al. // J. Mater. Chem. 2012. V. 22. P. 6526. https://doi.org/10.1039/c2jm15548f
- 10. Guell F., Galdamez-Martinez A., Martinez-Alanis P.R. et al. // Mater. Adv. 2023. V. 4. P. 3685. https://doi.org/10.1039/D3MA00227F
- 11. Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2099. https://doi.org/10.1134/S0036023622601520
- 12. Ulyankina A.A., Tsarenko A.D., Molodtsova T.A. et al. // Russ. J. Electrochem. 2023. V. 59. P. 1032. https://doi.org/10.1134/S1023193523120145
- 13. Grätzel M. // Prog. Photovolt: Res. Appl. 2006. V. 14. № 5. P. 429. https://doi.org/10.1002/pip.712
- 14. Grifoni F., Bonomo M., Naim W. et al. // Adv. Energy Mater. 2021. V. 11. P. 1. https://doi.org/10.1002/aenm.202101598
- 15. Ahmad W., Mehmood U., Al-Ahmed A. et al. // Electrochim. Acta. 2016. V. 222. P. 473. https://doi.org/10.1016/j.electacta.2016.10.200
- 16. Tiwana P., Docampo P., Johnston M.B. et al. // ACS Nano. 2011. V. 5. P. 5158. https://doi.org/10.1021/nn201243y
- 17. Sufyan M., Mehmood U., Qayyum Gill Y. et al. // Mater. Lett. 2021. V. 297. P. 1. https://doi.org/10.1016/j.matlet.2021.130017
- 18. Qu, J., Lai C. // J. Nanomater. 2013 V. 2013. P. 1. https://doi.org/10.1155/2013/762730
- 19. Law M., Greene L.E., Johnson J.C. et al. // Nat. Mater. 2005. V. 4. P. 455. https://doi.org/10.1038/nmat1387
- 20. Marimuthu T., Anandhan N. // AIP Conf. Proc. 2015. V. 1728. P. 020621-1. https://doi.org/10.1063/1.4946672
- 21. Yodyingyong S., Zhang Q., Park K. et al. // Appl. Phys. Lett. 2010. V. 96. № 7. P. 073115-1. https://doi.org/10.1063/1.3327339
- 22. Brown P., Takechi K., Kamat P.V. // J. Phys. Chem. C. 2008. V. 112. № 12. P. 4776. https://doi.org/10.1021/jp7107472
- 23. Bharat T.C., Shubham, Mondal S. et al. // Mater. Today: Proc. 2019. V. 11. P. 767. https://doi.org/10.1016/j.matpr.2019.03.041
- 24. Lin C.C., Li Y.Y. // Mater. Chem. Phys. 2009. V. 113. P. 334.
- 25. Gan Y.X., Jayatissa A.H., Yu Z. et al. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/8917013
- 26. Edalati K., Shakiba A., Vahdati-Khaki J., Zebarjad S.M. // Mater. Res. Bull. 2016. V. 74. P. 374. https://doi.org/10.1016/j.materresbull.2015.11.001
- 27. Mohajerani M.S., Lak A., Simchi A. // J. Alloys Compd. 2009. V. 485. № 1–2. P. 616. https://doi.org/10.1016/j.jallcom.2009.06.054
- 28. Steparuk A.S., Irgashev R.A., Zhilina E.F. et al. // J. Mater. Sci. – Mater. Electron. 2022. V. 33. P. 6307. https://doi.org/10.1007/s10854-022-07805-w
- 29. Iyengar P., Das C., Balasubramaniam K.R. // J. Phys. D: Appl. Phys. 2017. V. 50. № 10. P. 1. https://doi.org/10.1088/1361-6463/aa5875
- 30. Chowdhury M.S., Rahman K.S., Selvanathan V. et al. // RSC Advances. 2021. V. 11. № 24. P. 14534. https://doi.org/10.1039/D1RA00338K
- 31. Yang F., Ma S., Zhang X. et al. // Superlattices Microstruct. 2012. V. 52. № 2. P. 210. https://doi.org/10.1016/j.spmi.2012.05.004
- 32. Jeon E.H., Yang S., Kim Y. et al. // Nanoscale Res. Lett. 2015. V. 10. № 1. P. 1. https://doi.org/10.1186/s11671-015-1063-4
- 33. Khan A., Hussain M., Nur O. et al. // J. Phys. D: Appl. Phys. 2014. V. 47. № 34. P. 1. https://doi.org/10.1088/0022-3727/47/34/345102
- 34. Maikap A., Mukherjee K., Mondal B., Mandal N. // RSC Advances. 2016. V. 6. P. 64611. https://doi.org/10.1039/C6RA09598D
- 35. Laha P., Nazarkin M., Volkova A.V. et al. // Appl. Phys. Lett. 2015. V. 106. P. 101904. https://doi.org/10.1063/1.4913909
- 36. Li J.Y., Chen X.L., Li H. et al. // J. Cryst. Growth. 2001 V. 233. P. 5. https://doi.org/10.1016/S0022-0248 (01)01509-3
- 37. Tauc J., Scott T.A. // Phys. Today. 1967. V. 20. № 10. P. 105. https://doi.org/10.1063/1.3033945
- 38. Musa I., Qamhieh N., Mahmoud S.T. // Res. in Phys. 2017. V. 7. P. 3552. https://doi.org/10.1016/j.rinp.2017.09.035
- 39. Idiawati R., Mufti N., Taufiq A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 202. P. 012050. https://doi.org/10.1088/1757-899X/202/1/012050
- 40. Zhang L., Cole J.M. // ACS Appl. Mater. and Interfaces. 2015. V. 7. P. 3427. https://doi.org/10.1021/am507334m
- 41. Bojarski J.T., Mokrosz J.L., Barton H.J. et al. // Adv. Heterocycl. Chem. 1985. V. 38. P. 229. https://doi.org/10.1016/S0065-2725 (08)60921-6