ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Фотоактивные слои на основе наностержней ZnO, полученных гидротермальным синтезом, для сенсибилизированных красителями солнечных элементов

Код статьи
10.31857/S0044457X24060149-1
DOI
10.31857/S0044457X24060149
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 6
Страницы
919-927
Аннотация
Рассмотрено применение наностержней оксида цинка ZnO различной высоты, полученных гидротермальным синтезом, в качестве функциональных слоев для сенсибилизированных красителем солнечных элементов. Структура, морфология и оптические свойства слоев наностержней были исследованы методами рентгенофазового анализа, сканирующей электронной микроскопии, оптической спектроскопии. Изготовлены фотоаноды с использованием красителей на основе тиено[3,2-b]индола IS 4 и IS 9. Механизм адсорбции красителей и структур ZnO был изучен методом ИК-спектроскопии. С помощью фотоэлектрохимических измерений была исследована эффективность работы фотоанодов. Показана зависимость эффективности сенсибилизированных красителем солнечных элементов от длины наностержней. Максимальный результат преобразования света был получен для фотоанода со средней высотой наностержней 2.5 мкм и адсорбированным красителем IS 4.
Ключевые слова
гидротермальный синтез оксид цинка ZnO наностержни сенсибилизированные красителями солнечные элементы
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Kumar V., Gupta R., Bansal A. // ACS Appl. Nano Mater. 2021. V. 4. P. 6212. https://doi.org/10.1021/acsanm.1c01012
  2. 2. Kim K.H., Utashiro K., Abe Y., Kawamura M. // Materials. 2014. V. 7(4). P. 2522. https://doi.org/10.3390/ma7042522
  3. 3. Kumar R., Umar A., Kumar G. et al. // Mater. Sci. 2017. V. 52. P. 4743. https://doi.org/10.1007/s10853-016-0668-z
  4. 4. Shah M.A. // Mod. Phys. Lett. B. 2008. V. 22. № 26. P. 2617. https://doi.org/10.1142/S0217984908017126
  5. 5. Samanta P.K., Bandyopadhyay A.K. // Appl. Nanosci. 2012. V. 2. P. 111. https://doi.org/10.1007/s13204-011-0038-8
  6. 6. Li X., Li R., Feng X. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1386. https://doi.org/10.1134/s0036023623601307
  7. 7. Bouarroudj T., Aoudjit L., Nessaibia I. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1074. https://doi.org/10.1134/S0036024423050278
  8. 8. Duangnet L., Phuruangrat A., Thongtem T. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 721. https://doi.org/10.1134/S0036023622050114
  9. 9. Djurisic A.B., Chen X., Leung, Y.H. et al. // J. Mater. Chem. 2012. V. 22. P. 6526. https://doi.org/10.1039/c2jm15548f
  10. 10. Guell F., Galdamez-Martinez A., Martinez-Alanis P.R. et al. // Mater. Adv. 2023. V. 4. P. 3685. https://doi.org/10.1039/D3MA00227F
  11. 11. Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2099. https://doi.org/10.1134/S0036023622601520
  12. 12. Ulyankina A.A., Tsarenko A.D., Molodtsova T.A. et al. // Russ. J. Electrochem. 2023. V. 59. P. 1032. https://doi.org/10.1134/S1023193523120145
  13. 13. Grätzel M. // Prog. Photovolt: Res. Appl. 2006. V. 14. № 5. P. 429. https://doi.org/10.1002/pip.712
  14. 14. Grifoni F., Bonomo M., Naim W. et al. // Adv. Energy Mater. 2021. V. 11. P. 1. https://doi.org/10.1002/aenm.202101598
  15. 15. Ahmad W., Mehmood U., Al-Ahmed A. et al. // Electrochim. Acta. 2016. V. 222. P. 473. https://doi.org/10.1016/j.electacta.2016.10.200
  16. 16. Tiwana P., Docampo P., Johnston M.B. et al. // ACS Nano. 2011. V. 5. P. 5158. https://doi.org/10.1021/nn201243y
  17. 17. Sufyan M., Mehmood U., Qayyum Gill Y. et al. // Mater. Lett. 2021. V. 297. P. 1. https://doi.org/10.1016/j.matlet.2021.130017
  18. 18. Qu, J., Lai C. // J. Nanomater. 2013 V. 2013. P. 1. https://doi.org/10.1155/2013/762730
  19. 19. Law M., Greene L.E., Johnson J.C. et al. // Nat. Mater. 2005. V. 4. P. 455. https://doi.org/10.1038/nmat1387
  20. 20. Marimuthu T., Anandhan N. // AIP Conf. Proc. 2015. V. 1728. P. 020621-1. https://doi.org/10.1063/1.4946672
  21. 21. Yodyingyong S., Zhang Q., Park K. et al. // Appl. Phys. Lett. 2010. V. 96. № 7. P. 073115-1. https://doi.org/10.1063/1.3327339
  22. 22. Brown P., Takechi K., Kamat P.V. // J. Phys. Chem. C. 2008. V. 112. № 12. P. 4776. https://doi.org/10.1021/jp7107472
  23. 23. Bharat T.C., Shubham, Mondal S. et al. // Mater. Today: Proc. 2019. V. 11. P. 767. https://doi.org/10.1016/j.matpr.2019.03.041
  24. 24. Lin C.C., Li Y.Y. // Mater. Chem. Phys. 2009. V. 113. P. 334.
  25. 25. Gan Y.X., Jayatissa A.H., Yu Z. et al. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/8917013
  26. 26. Edalati K., Shakiba A., Vahdati-Khaki J., Zebarjad S.M. // Mater. Res. Bull. 2016. V. 74. P. 374. https://doi.org/10.1016/j.materresbull.2015.11.001
  27. 27. Mohajerani M.S., Lak A., Simchi A. // J. Alloys Compd. 2009. V. 485. № 1–2. P. 616. https://doi.org/10.1016/j.jallcom.2009.06.054
  28. 28. Steparuk A.S., Irgashev R.A., Zhilina E.F. et al. // J. Mater. Sci. – Mater. Electron. 2022. V. 33. P. 6307. https://doi.org/10.1007/s10854-022-07805-w
  29. 29. Iyengar P., Das C., Balasubramaniam K.R. // J. Phys. D: Appl. Phys. 2017. V. 50. № 10. P. 1. https://doi.org/10.1088/1361-6463/aa5875
  30. 30. Chowdhury M.S., Rahman K.S., Selvanathan V. et al. // RSC Advances. 2021. V. 11. № 24. P. 14534. https://doi.org/10.1039/D1RA00338K
  31. 31. Yang F., Ma S., Zhang X. et al. // Superlattices Microstruct. 2012. V. 52. № 2. P. 210. https://doi.org/10.1016/j.spmi.2012.05.004
  32. 32. Jeon E.H., Yang S., Kim Y. et al. // Nanoscale Res. Lett. 2015. V. 10. № 1. P. 1. https://doi.org/10.1186/s11671-015-1063-4
  33. 33. Khan A., Hussain M., Nur O. et al. // J. Phys. D: Appl. Phys. 2014. V. 47. № 34. P. 1. https://doi.org/10.1088/0022-3727/47/34/345102
  34. 34. Maikap A., Mukherjee K., Mondal B., Mandal N. // RSC Advances. 2016. V. 6. P. 64611. https://doi.org/10.1039/C6RA09598D
  35. 35. Laha P., Nazarkin M., Volkova A.V. et al. // Appl. Phys. Lett. 2015. V. 106. P. 101904. https://doi.org/10.1063/1.4913909
  36. 36. Li J.Y., Chen X.L., Li H. et al. // J. Cryst. Growth. 2001 V. 233. P. 5. https://doi.org/10.1016/S0022-0248 (01)01509-3
  37. 37. Tauc J., Scott T.A. // Phys. Today. 1967. V. 20. № 10. P. 105. https://doi.org/10.1063/1.3033945
  38. 38. Musa I., Qamhieh N., Mahmoud S.T. // Res. in Phys. 2017. V. 7. P. 3552. https://doi.org/10.1016/j.rinp.2017.09.035
  39. 39. Idiawati R., Mufti N., Taufiq A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 202. P. 012050. https://doi.org/10.1088/1757-899X/202/1/012050
  40. 40. Zhang L., Cole J.M. // ACS Appl. Mater. and Interfaces. 2015. V. 7. P. 3427. https://doi.org/10.1021/am507334m
  41. 41. Bojarski J.T., Mokrosz J.L., Barton H.J. et al. // Adv. Heterocycl. Chem. 1985. V. 38. P. 229. https://doi.org/10.1016/S0065-2725 (08)60921-6
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека