RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Chemical Generation And Reactivity Of Highly Oxidized Oxo-Species Of Water-Soluble µ-Carbide Dimer Ruthenium(IV)Phthalocyaninate

PII
10.31857/S0044457X24060058-1
DOI
10.31857/S0044457X24060058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 6
Pages
829-843
Abstract
The chemical generation of highly oxidized species of µ-carbido dimer water-soluble ruthenium sulfophthalocyaninate in reaction with tert-butyl hydroperoxide was studied using spectral methods. The regularities of the active species formation have been established and a reaction mechanism has been proposed. The coordinating ability of the dimeric complex is shown to determine the possibility of the π-radical cation and diradical cation species formation. The influence of peroxide concentration and pH of the medium on the type of the generated active species capable of oxidizing not only synthetic dye, but also organic peroxide, is demonstrated.
Keywords
фталоцианин рутений биядерный комплекс оксоформа катион-радикал
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
44

References

  1. 1. Cytochrome P450: Structure, Mechanism, and Biochemistry / Ed. Ortiz de Montellano P.R. New York: Kluwer Academic/Plenum Publishers, 2005. 690 p. https://doi.org/10.1007/b139087
  2. 2. Denisov I.G., Makris T.M., Sligar S.G. et al. // Chem. Rev. 2005. V. 105. № 6. P. 2253. https://doi.org/10.1021/cr0307143
  3. 3. Fumito T., Mikiya M., Shinya N. et al. // Coord. Chem. Rev. 2002. V. 226. № 1–2. P. 219. https://doi.org/10.1016/S0010-8545 (01)00444-1
  4. 4. Eric R., Alexandra L., Mélanie Q. et al. // Coord. Chem. Rev. 1998. V. 178–180. P. 1407. https://doi.org/10.1016/S0010-8545 (98)00148-9
  5. 5. Meunier B., de Visser S.P., Shaik S. // Chem. Rev. 2004. V. 104. № 9. P. 3947. https://doi.org/10.1021/cr020443g
  6. 6. Omura K., Aiba Y., Suzuki K. et al. // ACS Catal. 2022. V. 12. № 18. P. 11108. https://doi.org/10.1021/acscatal.2c01345
  7. 7. Bhunia S., Ghatak A., Dey A. // Chem. Rev. 2022. V. 122. № 14. P. 12370. https://doi.org/10.1021/acs.chemrev.1c01021
  8. 8. Nam W. // Acc. Chem. Res. 2007. V. 40. № 7. P. 522. https://doi.org/10.1021/ar70002
  9. 9. Kent M.U., Jushchhyshyn I.M., Hollenberg F.P. // Curr. Drug Metab. 2001. V. 2. № 3. P. 215. https://dx.doi.org/10.2174/1389200013338478
  10. 10. John B.S., Stephen G.S., Dominick L.C. // Pharmacol. Ther. 1981. V. 12. № 1. P. 43. https://doi.org/10.1016/0163-7258 (81)90075-9
  11. 11. Nam W., Ryu Y.O., Song W.J. // J. Biol. Inorg. Chem. 2004. V. 9. № 6. P. 654. https://doi.org/10.1007/s00775-004-0577-5
  12. 12. Nam W., Lim M.H., Lee H.J. et al. // J. Am. Chem. Soc. 2000. V. 122. № 28. P. 6641. https://doi.org/10.1021/ja000289k
  13. 13. Collman J.P., Chien A.S., Eberspacher T.A. et al. // J. Am. Chem. Soc. 2000. V. 122. № 45. P. 11098. https://doi.org/10.1021/ja000961d
  14. 14. Collman J.P., Zeng L., Decréau R.A. // Chem. Commun. 2003. P. 2974. http://dx.doi.org/10.1039/B310763A
  15. 15. Nam W., Jin S.W., Lim M.H. et al. // Inorg. Chem. 2002. V. 41. № 14. P. 3647. https://doi.org/10.1021/ic011145p
  16. 16. Shaik S., Hirao H., Kumar D. // Acc. Chem. Res. 2007. V. 40. № 7. P. 532. https://doi.org/10.1021/ar600042c
  17. 17. Franke A., Fertinger C., van Eldik R. // Angew. Chem. Int. Ed. 2008. V. 47. № 28. P. 5238. https://doi.org/10.1002/anie.200800907
  18. 18. Hessenauer-Ilicheva N., Franke A., Wolak M. et al. // Chem. Eur. J. 2009. V. 15. № 45. P. 12447. https://doi.org/10.1002/chem.200901712
  19. 19. Baglia R.A., Zaragoza J.P.T., Goldberg D.P. // Chem. Rev. 2017. V. 117. № 21. P. 13320. https://doi.org/10.1021/acs.chemrev.7b00180
  20. 20. Huang X., Groves J.T. // Chem. Rev. 2018. V. 118. 5. P. 2491. https://doi.org/10.1021/acs.chemrev.7b00373
  21. 21. Guo M., Corona T., Ray K. et al. // ACS Cent. Sci. 2019. V. 5. № 1. P. 13. https://doi.org/10.1021/acscentsci.8b00698
  22. 22. Cipriano L.A., Di Liberto G., Pacchioni G. // ACS Catal. 2022. V. 12. № 19. P. 11682. https://doi.org/10.1021/acscatal.2c03020
  23. 23. Groves J.T., Myers R.S. // J. Am. Chem. Soc. 1983. V. 105. № 18. P. 5791. https://doi.org/10.1021/ja00356a016
  24. 24. Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
  25. 25. Kang Y., Chen H., Jeong Y.J. et al. // Chem. Eur. J. 2009. V. 15. № 39. P. 10039. https://doi.org/10.1002/chem.200901238
  26. 26. Yakushev A.A., Averin A.D., Maloshitskaya O.A. et al. // Macroheterocycles. 2018. V. 11. № 2. P. 135. https://doi.org/10.6060/mhc180276a
  27. 27. Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений / Под. ред. Койфмана О.И. М.: URSS, 2019. 848 с. ISBN 978-5-9710-6952-2
  28. 28. Christendat D, David M.-A., Morin S. et al. // J. Porphyr. Phthalocyanines. 2005. V. 9. № 9. P. 626. https://doi.org/10.1142/S1088424605000733
  29. 29. Balkus K.J., Eissa M., Lavado R. // Studies in Surface Science and Catalysis. 1995. V. 94. P. 713. https://doi.org/10.1016/S0167-2991 (06)81288-7
  30. 30. Balkus K.J.Jr., Eissa M., Levado R. // J. Am. Chem. Soc. 1995. V. 117. № 43. P. 10753. https://doi.org/10.1021/ja00148a022
  31. 31. Alexiou C., Lever A.B.P. // Coord. Chem. Rev. 2001. V. 216–217. P. 45. https://doi.org/10.1016/S0010-8545 (01)00350-2
  32. 32. Rawling T., McDonagh A. // Coord. Chem. Rev. 2007. V. 251. № 9–10. P. 1128. https://doi.org/10.1016/j.ccr.2006.09.011
  33. 33. Cammidge A.N., Berber G., Chambrier I. et al. // Tetrahedron. 2005. V. 61. № 16. P. 4067. https://doi.org/10.1016/j.tet.2005.02.027
  34. 34. Cailler L.P., Clémancey M., Barilone J. et al. // Inorg. Chem. 2020. V. 59. № 2. P. 1104. https://doi.org/10.1021/acs.inorgchem.9b02718
  35. 35. Kroitor A.P., Cailler L.P., Martynov A.G. et al. // Dalton Trans. 2017. V. 46. № 45. P. 15651. http://dx.doi.org/10.1039/C7DT03703A
  36. 36. Зайцева С.В., Зданович С.А., Тюрин Д.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 294. https://doi.org/10.31857/S0044457X22030175
  37. 37. Zaitseva S.V., Tyulyaeva E.Yu., Tyurin D.V. et al. // J. Organomet. Chem. 2020. V. 912. P. 121164. https://doi.org/10.1016/j.jorganchem.2020.121164
  38. 38. Zaitseva S.V., Tyulyaeva E.Yu., Tyurin D.V. et al. // Polyhedron. 2022. V. 217. P. 115739. https://doi.org/10.1016/j.poly.2022.115739
  39. 39. Sorokin A.B. // Catal. Today. 2021. V. 373. P. 38. https://doi.org/10.1016/j.cattod.2021.03.016
  40. 40. Capobianchi A., Paoletti A.M., Pennesi G. et al. // Inorg. Chem. 1994. V. 33. № 21. P. 4635. https://doi.org/10.1021/ic00099a013
  41. 41. Cailler L.P., Kroitor A.P., Martynov A.G. et al. // Dalton Trans. 2021. V. 50. № 6. P. 2023. http://dx.doi.org/10.1039/D0DT04090H
  42. 42. Симонова О.Р., Зайцева С.В., Тюляева Е.Ю. и др. // Журн. физ. химии. 2018. Т. 92. № 11. С. 1692. http://dx.doi.org/10.1134/S0044453718110390
  43. 43. Зайцева С.В., Симонова О.Р., Зданович С.А. и др. // Макрогетероциклы. 2018. Т. 11. № 1. С. 55. http://dx.doi.org/10.6060/mhc180173s
  44. 44. Тюрин Д.В., Зайцева С.В., Кудрик Е.В. // Журн. физ. химии. 2018. Т. 92. № 5. С. 723. https://doi.org/10.7868/S0044453718050084
  45. 45. Zaitseva S.V., Tyulyaeva E.Yu., Zdanovich S.A. et al. // J. Mol. Liq. 2019. V. 287. P. 111023. https://doi.org/10.1016/j.molliq.2019.111023
  46. 46. Kienast A., Galich L., Murray K.S. et al. // J. Porphyrins Phthalocyanines. 1997. V. 1. № 2. P. 141. https://doi.org/10.1002/ (SICI)1099-1409(199704)1: 2%3C141::AID-JPP18%3E3.0.CO;2-M
  47. 47. Kluson P., Drobek M., Kalaji A. et al. // Res. Chem. Intermed. 2009. V. 35. № 1. P. 103. https://doi.org/10.1007/s11164-008-0003-7
  48. 48. Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. № 15. P. 154102. https://doi.org/10.1063/5.0005188
  49. 49. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. № 2. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  50. 50. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. № 11. P. 4814. https://doi.org/10.1021/acs.jcim.9b00725
  51. 51. Экспериментальные методы химической кинетики / Под ред. Эмануэля Н.М., Сергеева Г.Б. М.: Высш. шк., 1980. 375с.
  52. 52. Kutsybala D.S., Shokurov A.V., Kroitor A.P. et al. // Macroheterocycles. 2021. V. 14. № 1. P. 51. https://doi.org/10.6060/mhc210234
  53. 53. Nyokong T., Gasyna Z., Stillman M.J. // Inorg. Chem. 1987. V. 26. № 7. P. 1087. https://doi.org/10.1021/ic00254a025
  54. 54. Hanack M., Osío-Barcina J., Witke E. et al. // Synthesis. 1992. V. 1992. № 01-02. P. 211. https://doi.org/10.1055/s-1992-34149
  55. 55. Singh A.K., Usman M., Sarkar S. et al. // Inorg. Chem. 2021. V. 60. № 21. P. 16492. https://doi.org/10.1021/acs.inorgchem.1c02331
  56. 56. Sil D., Dey S., Kumar A. et al. // Chem. Sci. 2016. V. 7. № 2. P. 1212. https://doi.org/10.1039/c5sc03120f
  57. 57. Гришина Е.Г., Макарова А.С., Кудрик Е.В. и др. // Журн. физ. химии. 2016. Т. 90. № 3. С. 477. https://doi.org/10.7868/S0044453716030134
  58. 58. Sugishima M., Sakamoto H., Higashimoto Y. et al. // J. Biol. Chem. 2003. V. 278. № 34. P. 32352. https://doi.org/10.1074/jbc.M303682200
  59. 59. Симонова О.Р., Зайцева С.В., Койфман О.И. // Журн. общ. химии. 2016. Т. 86. № 6. С. 992. https://doi.org/10.1134/S1070363216060177
  60. 60. Pedersen C.J. // J. Org. Chem. 1957. V. 22. № 2. P. 127. https://doi.org/10.1021/jo01353a005
  61. 61. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds / Handbook of Vibrational Spectroscopy. Eds Chalmers J.M., Griffiths P.R. John Wiley & Sons, 2006. P. 1872. https://doi.org/10.1002/0470027320.s4104
  62. 62. Chlistunoff J., Sansiñena J.-M. // J. Phys. Chem. C. 2014. V. 118. № 33. P. 19139. https://doi.org/10.1021/jp5044249
  63. 63. Podgorski M.N., Coleman T., Churchman L.R. et al. // Chem. Eur. J. 2022. V. 28. № 72. P. e202202428. https://doi.org/10.1002/chem.202202428
  64. 64. Coleman T., Kirk A.M., Chao R.R. et al. // ACS Catal. 2021. V. 11. № 4. P. 1995. https://doi.org/10.1021/acscatal.0c04872
  65. 65. Fertinger C., Hessenauer-Ilicheva N., Franke A. et al. // Chem. Eur. J. 2009. V. 15. № 48. P. 13435. https://doi.org/10.1002/chem.200901804
  66. 66. Rayati S., Sheybanifard Z. // C.R. Chim. 2016. V. 19. № 3. P. 371. https://doi.org/10.1016/j.crci.2015.12.001
  67. 67. Liang L., Cheng L., Zhang Y. et al. // RSC Adv. 2020. V. 10. P. 28509. https://doi.org/10.1039/d0ra03125a
  68. 68. Li H., Gong Y., Huang Q. et al. // Ind. Eng. Chem. Res. 2013. V. 52. № 44. P. 15560. https://doi.org/10.1021/ie401503u
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library