RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Increasing the water solubility of N-acyl-substituted amino acid esters as inhibitors of the replication of modern influenza A virus strains in vitro due to zinc(II) complexation

PII
10.31857/S0044457X24050113-1
DOI
10.31857/S0044457X24050113
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
736-742
Abstract
This article proposes carbocyclic derivatives of N-acylated esters of L-amino acids with aromatic carboxylic acids as antiviral low-molecular agents. To increase the water solubility of inhibitors that are insoluble in aqueous solutions, the target compounds were used in the form of zinc(II) complexes. It has been shown that hydrophobic organic compounds in the form of zinc(II)-coordinated ligands are capable of suppressing the replication of an influenza A virus strain resistant to adamantane-type drugs. Zinc(II) chloride at the concentration used does not have antiviral or toxic effects in experiments in vitro.
Keywords
грипп А противовирусная активность растворимость в воде цинк L-аминокислоты ароматические карбоновые кислоты
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Sarkar A., Mandal K. // Angew. Chem. Int. Ed. Engl. 2021. V. 60. P. 23492. https://doi.org/10.1002/anie.202107481
  2. 2. Davies W.L., Grunnert R.R., Haff R.F. et al. // Science. 1964. V. 44. P. 862.
  3. 3. Togo Y., Hornick R.B., Dawkins A.T. // J. Am. Med. Assoc. 1968. V. 203. P. 1089.
  4. 4. Wendel H.A., Snyder M.T., Pell S. // Clin. Pharmacol. Ther. 1966. V. 7. P. 38.
  5. 5. Okada A., Miura T., Takeuchi H. // Biochemistry. 2001. V. 40. P. 6053.
  6. 6. Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 28. https://doi.org/10.1134/S0036023622010028
  7. 7. Shibnev V.A., Deryabin P.G., Garaev T.M. et al. // Russ. J. Bioorg. Chem. 2017. V. 43. P. 517.
  8. 8. Garaev T.M., Odnovorov A.I., Grebennikova T.V. et al. // Adv. Pharm. Bull. 2021. V. 11. P. 700.
  9. 9. Shibnev V.A., Garaev T.M., Finogenova M.P. et al. // Pharm. Chem. J. 2012. V. 46. P. 36.
  10. 10. Шибнев В.А., Гараев Т.М., Финогенова М.П. и др. Пат. RU 2461544 С1. 2012.
  11. 11. Климочкин Ю.Н., Леонова М.В., Ширяев А.К. Пат. RU 2553991 С1. 2008.
  12. 12. Шибнев В.А., Дерябин П.Г., Бурцева Е.И. Пат. RU 2572102 С1. 2014.
  13. 13. Caetano-Silva M.E., Cilla A., Bertoldo-Pacheco M.T. et al. // J. Food Comp. Anal. 2018. V. 68. P. 95. https://doi.org/10.1016/j.jfca.2017.03.010
  14. 14. Lebedeva N.S., Mal’kova E.A., Pavlycheva N.A. et al. // Russ. J. Coord. Chem. 2004. V. 30. P. 864. https://doi.org/10.1007/s11173-005-0006-5
  15. 15. Zhdanova K.A., Savel’eva I.O., Usanev A.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1756. https://doi.org/10.1134/S0036023622601209
  16. 16. Dojer B., Golobič A., Babič N. et al. // J. Mol. Struct. 2022. V. 1265. P. 133393. https://doi.org/10.1016/j.molstruc.2022.133393
  17. 17. Chuprin A.S., Dudkin S.V., Vologzhanina A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 713. https://doi.org/10.1134/S003602362360065X
  18. 18. Jacob W., Mukherjee R. // Inorg. Chim. Acta. 2006. V. 359. P. 4565. https://doi.org/10.1016/j.ica.2006.07.003
  19. 19. Leite S.M.G., Lima L.M.P., Gama S. et al. // Inorg. Chem. 2016. V. 55. P. 11801. https://doi.org/10.1021/acs.inorgchem.6b01884
  20. 20. Wei Liao, Ziwei Zhu, Chenglian Feng et al. // J. Environ. Sci. 2023. V. 127. P. 495. https://doi.org/10.1016/j.jes.2022.06.002
  21. 21. Gur’eva Y.A., Zalevskaya O.A., Kuchin A.V. // Russ. J. Coord. Chem. 2023. V. 49. P. 631. https://doi.org/10.1134/S1070328423700665
  22. 22. Uvarova M.A., Novikova M.V., Eliseenkova V.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 680. https://doi.org/10.1134/S1070328423600419
  23. 23. Betancourth J.G., Sánchez-Rodríguez N.E., Giraldo-Dávila D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2200. https://doi.org/10.1134/S0036023622600782
  24. 24. Ivanova I.S., Tsebrikova G.S., Ilyukhin A.B. et al. // Russ. J. Inorg. Chem. 2023. https://doi.org/10.1134/S0036023623601393
  25. 25. Ermakova E.A., Golubeva Y.A., Smirnova K.S. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 593. https://doi.org/10.1134/S1070328423600158
  26. 26. Garaev T.M., Yudin I.I., Breslav N.V. et al. // Tetrahedron. 2023. V. 151. № 133785.
  27. 27. Garaev T., Breslav N., Grebennikova T. et al. // Proc. 9th Int. Electron. Conf. Med. Chem., 1–30 November 2023, MDPI: Basel, Switzerland. https://doi.org/10.3390/ECMC2023–15805
  28. 28. Garaev T.M., Yudin I.I., Breslav N.V. et al. // Curr. Pharm. Res. 2023 (in press).
  29. 29. Shibnev V.A., Garaev T.M., Finogenova M.P. et al. // Pharm. Chem. J. 2012. V. 46. P. 1.
  30. 30. Бурцева Е.И., Шевченко Е.С., Ленева И.А. и др. // Вопр. вирусологии. 2007. № 2. С. 24.
  31. 31. Лeнeвa И.A., Фaдeeвa Н.И., Фeдякинa И.T. и др. // Хим.-фарм. журн. 1994. № 9. C. 4.
  32. 32. Шибнев В.А., Дерябин П.Г., Бурцева Е.И. Пат. RU 2624906 С1. 2015.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library