- PII
- 10.31857/S0044457X24040177-1
- DOI
- 10.31857/S0044457X24040177
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 4
- Pages
- 624-633
- Abstract
- Crystal structure, morphology and electrochromic properties of V2O5 film, prepared using vanadyl alkoxoacetylacetonate as precursor, were studied. We have shown that the obtained vanadium pentoxide contains significant amount of V4+ cations, which is indicated by low electron work function among other things. This results in material possessing anodic electrochromism – coloring upon oxidation – with rapid bleaching process (1 s upon necessary potential application). Anodic coloration is observed in the whole visible light spectrum, as well as in near IR region up to 1100 nm. Obtained data show high prospects for approach to formation of V2O5-based films using vanadyl acetylacetonate as precursor and application of such films as components of smart windows and displays, optical properties of which could be controlled by electrical current application.
- Keywords
- оксид ванадия пентаоксид ванадия электрохромизм алкоксоацетилацетонат электрохромные материалы
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
- 2. Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
- 3. Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
- 4. Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
- 5. Ataalla M., Afify A.S., Hassan M. et al. // J. Non-Cryst. Solids. 2018. V. 491. P. 43. https://doi.org/10.1016/j.jnoncrysol.2018.03.050
- 6. Wojcik P.J., Santos L., Pereira L. et al. // Nanoscale. 2015. V. 7. № 5. P. 1696. https://doi.org/10.1039/c4nr05765a
- 7. Wen R.T., Niklasson G.A., Granqvist C.G. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 18. P. 9319. https://doi.org/10.1021/acsami.5b01715
- 8. Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C: Mater. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
- 9. Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
- 10. Xiong C., Aliev A.E., Gnade B. et al. // ACS Nano. 2008. V. 2. № 2. P. 293. https://doi.org/10.1021/nn700261c
- 11. Scherer M.R.J., Li L., Cunha P.M.S. et al. // Adv. Mater. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
- 12. Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
- 13. Mjejri I., Gaudon M., Rougier A. // Sol. Energy Mater. Sol. Cells. 2019. V. 198. № December 2018. P. 19. https://doi.org/10.1016/j.solmat.2019.04.010
- 14. Kozlov D.A., Kozlova T.O., Shcherbakov A.B. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1088. https://doi.org/10.1134/S003602362007013X
- 15. Parshina L.S., Novodvorsky O.A. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1234. https://doi.org/10.1134/S0036023621080209
- 16. Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
- 17. Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C: Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
- 18. Gorobtsov F.Yu., Simonenko T.L., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1094. https://doi.org/10.1134/S0036023622070105
- 19. Liu Q., Li Z.F., Liu Y. et al. // Nat. Commun. 2015. V. 6. P. 6127. https://doi.org/10.1038/ncomms7127
- 20. Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. P. 033710. https://doi.org/10.1063/1.361139
- 21. Chen C.P., Chen Y.D., Chuang S.C. // Adv. Mater. 2011. V. 23. № 33. P. 3859. https://doi.org/10.1002/adma.201102142
- 22. Matamura Y., Ikenoue T., Miyake M. et al. // Sol. Energy Mater. Sol. Cells. 2021. V. 230. P. 111287. https://doi.org/10.1016/j.solmat.2021.111287
- 23. Piccirillo C., Binions R., Parkin I.P. // Chem. Vap. Deposition. 2007. V. 13. № 4. P. 145. https://doi.org/10.1002/cvde.200606540
- 24. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1416. https://doi.org/10.1134/S0036023621090138
- 25. Gorobtsov P.Yu., Simonenko T.L., Simonenko N.P. et al. // Colloids Interfaces. 2023. V. 7. № 1. P. 20. https://doi.org/10.3390/colloids7010020
- 26. Gorobtsov P.Yu., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837
- 27. Gorobtsov P.Y., Fisenko N.A., Solovey V.R. et al. // Colloids Interface Sci. Commun. 2021. V. 43. P. 100452. https://doi.org/10.1016/j.colcom.2021.100452
- 28. Zhou B., He D. // J. Raman Spectrosc. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
- 29. Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectrosc. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
- 30. Clauws P., Broeckx J., Vennik J. // Phys. Status Solidi B. 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
- 31. Abello L., Husson E., Repelin Y. et al. // Spectrochim. Acta. 1983. V. 39A. № 7. P. 641. https://doi.org/10.1016/0584-8539 (83)80040-3
- 32. Schilbe P. // Physica B. 2002. V. 316-317. P. 600. https://doi.org/10.1016/S0921-4526 (02)00584-7
- 33. Wei J., Ji H., Guo W. et al. // Nat. Nanotechnol. 2012. V. 7. № 6. P. 357. https://doi.org/10.1038/nnano.2012.70
- 34. Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. P. 4854. https://doi.org/10.1038/srep04854
- 35. Botto I.L., Vassallo M.B., Baran E.J. et al. // Mater. Chem. Phys. 1997. V. 50. P. 267. https://doi.org/10.1016/S0254-0584 (97)01940-8
- 36. Bodurov G., Ivanova T., Abrashev M. et al. // Phys. Procedia. 2013. V. 46. P. 127. https://doi.org/10.1016/j.phpro.2013.07.054
- 37. Vedeanu N., Cozar O., Stanescu R. et al. // J. Mol. Struct. 2013. V. 1044. P. 323. https://doi.org/10.1016/j.molstruc.2013.01.078
- 38. Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C: Mater. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
- 39. Choi S.G., Seok H.J., Rhee S. et al. // J. Alloys Compd. 2021. V. 878. P. 160303. https://doi.org/10.1016/j.jallcom.2021.160303
- 40. Peng H., Sun W., Li Y. et al. // Nano Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
- 41. Vernardou D. // Coatings. 2017. V. 7. № 2. P. 24. https://doi.org/10.3390/coatings7020024
- 42. Iida Y., Kaneko Y., Kanno Y. // J. Mater. Process. Technol. 2008. V. 197. № 1–3. P. 261. https://doi.org/10.1016/j.jmatprotec.2007.06.032
- 43. Tong Z., Hao J., Zhang K. et al. // J. Mater. Chem. C: Mater. 2014. V. 2. № 18. P. 3651. https://doi.org/10.1039/c3tc32417f
- 44. Jin A., Chen W., Zhu Q. et al. // Thin Solid Films. 2009. V. 517. № 6. P. 2023. https://doi.org/10.1016/j.tsf.2008.10.001
- 45. Cholant C.M., Westphal T.M., Balboni R.D.C. et al. // J. Solid State Electrochem. 2017. V. 21. № 5. P. 1509. https://doi.org/10.1007/s10008-016-3491-1
- 46. Patil C.E., Tarwal N.L., Jadhav P.R. et al. // Curr. Appl. Phys. 2014. V. 14. № 3. P. 389. https://doi.org/10.1016/j.cap.2013.12.014
- 47. Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. C. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
- 48. Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
- 49. Koo B.R., Bae J.W., Ahn H.J. // Ceram. Int. 2019. V. 45. № 9. P. 12325. https://doi.org/10.1016/j.ceramint.2019.03.148
- 50. Surca A.K., Dražić G., Mihelčič M. // Sol. Energy Mater. Sol. Cells. 2019. V. 196. P. 185. https://doi.org/10.1016/j.solmat.2019.03.017