RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Spectral properties of tolan and its supramolecular complexes in solution and silicate hydrogel

PII
10.31857/S0044457X24040087-1
DOI
10.31857/S0044457X24040087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 4
Pages
528-536
Abstract
The complexation process of tolane and α-cyclodextrin in water, aqueous-ethanol solution and silicate hydrogel based on tetrakis(2 hydroxyethyl)orthosilicate was studied. The complex formation in solutions were confirmed by electron and 1H NMR spectroscopy, and the stability constant of the complex was determined using spectrofluorimetric titration (lgK1:1 = 1.5). The preservation of the inclusion complex during the preparation of the gel was confirmed by electron spectroscopy.
Keywords
толан α-циклодекстрин комплексы включения флуоресценция комплексообразование в воде супрамолекулярные гели константа устойчивости комплекса электронная спектроскопия спектроскопия 1H ЯМР
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
39

References

  1. 1. Wilson A. J. // Annu. Rep. Prog. Chem., Sect.B: Org. 2007. V. 103. P. 174. https://doi.org/10.1039/b614407c
  2. 2. Pistolis G., Balomenou I. // J. Phys. Chem. B 2006. V. 110. № 33. P. 16428. https://doi.org/10.1021/jp062003p
  3. 3. Tian T., Wang Y., Zhang W. et al. // ACS Photonics 2020. V. 7. № 8. P. 2132. https://doi.org/10.1021/acsphotonics.0c00602
  4. 4. Connors K.A. // Chem. Rev. 1997. V. 97. № 5. P. 1325. https://doi.org/10.1021/cr960371r
  5. 5. Dodziuk H. // Molecules with Holes – Cyclodextrins, 2006. https://doi.org/10.1002/3527608982.ch1
  6. 6. Walter G., Coche A. // Nucl. Instruments Methods 1963. V. 23. № C. P. 147. https://doi.org/10.1016/0029-554X (63)90027-2
  7. 7. Aurisicchio C., Ventura B., Bonifazi D. et al. // J. Phys. Chem. C 2009. V. 113. № 41. P. 17927. https://doi.org/10.1021/jp9053988
  8. 8. Menning S., Kra M., Coombs B.A. et al. // J Am Chem Soc 2013. V. 135. P. 2160. https://doi.org/10.1021/ja400416r
  9. 9. Saifi A., Joseph J.P., Singh A.P. et al. // ACS Omega 2021. V. 6. № 7. P. 4776. https://doi.org/10.1021/acsomega.0c05684
  10. 10. Asiri A.M., El-Daly S.A., Khan S.A. // Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 2012. V. 95. P. 679. https://doi.org/10.1016/j.saa.2012.04.077
  11. 11. Al-Sherbini E.S.A.M. // Microporous Mesoporous Mater. 2005. V. 85. № 1–2. P. 25. https://doi.org/10.1016/j.micromeso.2005.06.016
  12. 12. Dolinina E.S., Parfenyuk E.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 401. https://doi.org/10.1134/S0036023622030068
  13. 13. Buslaeva T.M., Ehrlich, G.V., Volchkova E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1191. https://doi.org/10.1134/S0036023622080058
  14. 14. Ooya T., Kobayashi N., Ichi T. et al. // Sci. Technol. Adv. Mater. 2003. V. 4. № 1. P. 39. https://doi.org/10.1016/S1468-6996 (03)00003-2
  15. 15. Koshkin A.V., Aleksandrova N.A., Ivanov D.A. // J. Sol-Gel Sci. Technol. 2017. V. 81. № 1. P. 303. https://doi.org/10.1007/s10971-016-4183-0
  16. 16. Brandhuber D., Torma V., Raab C. et al. // Chem. Mater. 2005. V. 17. № 3. P. 4262. https://doi.org/10.1021/cm048483j
  17. 17. Castellano S., Lorenc J. // J. Phys. Chem. 1965. V. 69. № 10. P. 3552. https://doi.org/10.1021/j100894a051
  18. 18. Armitage J.B., Entwistle N., Jones E.R.H.W.M.C. // J. Chem. Soc. 1954. V. 147. № 111. P. 147. https://doi.org/10.1039/JR9540000147
  19. 19. Du H., Fuh R.C.A., Li J. et al. // Photochem. Photobiol. 1998. V. 68. № 2. P. 141. https://doi.org/10.1111/j.1751-1097.1998.tb02480.x
  20. 20. Gans P., Sabatini A., Vacca A. // Talanta 1996. V. 43. № 10. P. 1739. https://doi.org/10.1016/0039-9140 (96)01958-3
  21. 21. Li Z., Sun S., Liu F. et al. // Dye. Pigment. 2012. V. 93. № 1–3. P. 1401. https://doi.org/10.1016/j.dyepig.2011.10.005
  22. 22. Shchipunov Y.A., Karpenko T.Y., Bakunina I.Y. et al. // J. Biochem. Biophys. Methods 2004. V. 58. № 1. P. 25. https://doi.org/10.1016/S0165-022X (03)00108-8
  23. 23. Koshkin A.V., Medvedeva A.A., Lobova N.A. // High Energy Chem. 2019. V. 53. № 6. P. 444. https://doi.org/10.1134/S0018143919060110
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library