- PII
- 10.31857/S0044457X24040038-1
- DOI
- 10.31857/S0044457X24040038
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 4
- Pages
- 480-487
- Abstract
- This work describes the use of silica particles obtained by sol-gel method as a templat for deposition of supramolecular complexes of melamine cyanurate. To obtain SiO2@melamine-cyanurate (SiO2@MCA) material, the method of covalent modification of silica surface by melamine molecules (SiO2-mel) was applied and the method of its further functionalization by hydrogen-bonded organic framework of melamine-cyanurate (HOF, MCA) was proposed. One of the promising directions of using SiO2@melamine-cyanurate is obtaining SiO2@g-C3N4 material on its basis. Control of the amount of applied melamine-cyanurate allows to potentially obtain g-C3N4 layers of different thicknesses on the silica surface.
- Keywords
- кремнезем наночастицы триазины
- Date of publication
- 15.04.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 23
References
- 1. Murugan Arunachalapandi, Selvaraj Mohana Roopan // High Energ. Chem. 2022. V. 56. № 2. P. 73. https://doi.org/10.1134/S0018143922020102
- 2. Raaja Rajeshwari M., Kokilavani S., Sudheer Khan S. // Chemosphere. 2022. V. 291. P. 132735. https://doi.org/10.1016/j.chemosphere.2021.132735
- 3. Cao L., Li Y., Zheng Z. // Russ. J. Phys. Chem. 2022. V. 96. № 5. P. 1112. https://doi.org/10.1134/S0036024422050193
- 4. Zhurenok A.V., Larina T.V., Markovskaya D.V. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 157. https://doi.org/10.1016/j.mencom.2021.03.004
- 5. Nemiwal M., Zhang T.C., Kumar D. // Sci. Total Environ. 2021. V. 767. P. 144896. https://doi.org/10.1016/j.scitotenv.2020.144896
- 6. Sohail M., Anwar U., Taha T.A. et al. // Arab. J. Chem. 2022. V. 15. № 9. P. 104070. https://doi.org/10.1016/j.arabjc.2022.104070
- 7. Mohamed N.A., Safaei J., Ismail A.F. et al. // Appl. Surf. Sci. 2019. V. 489. P. 92. https://doi.org/10.1016/j.apsusc.2019.05.312
- 8. Zhao X., Liu Q., Li X. et al. // Chin. Chem. Lett. 2023. V. 34. № 11. P. 108306. https://doi.org/10.1016/j.cclet.2023.108306
- 9. Dolai S., Bhunia S.K., Kluson P. et al. // ChemCatChem. 2022. V. 14. № 4. P. E202101299. https://doi.org/10.1002/cctc.202101299
- 10. Zhurenok A.V., Vasilchenko D.B., Kozlova E.A. // Int. J. Mol. Sci. 2023. V. 24. № 1. P. 346. https://doi.org/10.3390/ijms24010346
- 11. Vasilchenko D., Zhurenok A., Saraev A. et al. // Chem. Eng. J. 2022. V. 445. P. 136721. https://doi.org/10.1016/j.cej.2022.136721
- 12. Jun Y.-S., Lee E.Z., Wang X. et al. // Adv. Funct. Mater. 2013. V. 23. № 29. P. 3661. https://doi.org/10.1002/adfm.201203732
- 13. Niu H., Zhao W., Lv H. et al. // Chem. Eng. J. 2021. V. 411. P. 128400. https://doi.org/10.1016/j.cej.2020.128400
- 14. Shalom M., Inal S., Fettkenhauer C. et al. // J. Am. Chem. Soc. 2013. V. 135. № 19. P. 7118. https://doi.org/10.1021/ja402521s
- 15. Vu N.-N., Nguyen C.-C., Kaliaguine S. et al. // ChemSusChem. 2019. V. 12. № 1. P. 291. https://doi.org/10.1002/cssc.201802394
- 16. Lisichkin G.V., Olenin A.Yu. // Russ. J. Gen. Chem. 2021. V. 91. № 5. P. 870. https://doi.org/10.1134/S1070363221050182
- 17. Zuo B., Li W., Wu X. et al. // Chem. Asian J. 2020. V. 15. № 8. P. 1248. https://doi.org/10.1002/asia.202000045
- 18. Vashurin A.S., Boborov A.V., Botnar A.A. et al. // ChemChemTech. 2023. V. 66. № 7. P. 76. https://doi.org/10.6060/ivkkt.20236607.6840j
- 19. Goncharenko A.A., Tarasyuk I.A., Marfin Y.S. et al. // Molecules. 2020. V. 25. № 17. P. 3802. https://doi.org/10.3390/molecules25173802
- 20. Lin B., Xue C., Yan X. et al. // Appl. Surf. Sci. 2015. V. 357. P. 346. https://doi.org/10.1016/j.apsusc.2015.09.041
- 21. Sun S., Li C., Sun Z. et al. // Chem. Eng. J. 2021. V. 416. P. 129107. https://doi.org/10.1016/j.cej.2021.129107
- 22. Peng L., Li Z., Zheng R. et al. // J. Mater. Res. 2019. V. 34. № 10. P. 1785. https://doi.org/10.1557/jmr.2019.113
- 23. Wang W., Fang J., Chen H. // J. Alloys Compd. 2020. V. 819. P. 153064. https://doi.org/10.1016/j.jallcom.2019.153064
- 24. Wang X., Wang S., Hu W. et al. // Mater. Lett. 2014. V. 115. P. 53. https://doi.org/10.1016/j.matlet.2013.10.016
- 25. Bogush G.H., Tracy M.A., Zukoski C.F. // J. Non-Cryst. Solids. 1988. V. 104. № 1. P. 95. https://doi.org/10.1016/0022-3093 (88)90187-1
- 26. Stöber W., Fink A., Bohn E. // J. Colloid Interface Sci. 1968. V. 26. № 1. P. 62. https://doi.org/10.1016/0021-9797 (68)90272-5
- 27. Appaturi J.N., Jothi Ramalingam R., Al-Lohedan H.A. // J. Porous Mater. 2018. V. 25. № 2. P. 629. https://doi.org/10.1007/s10934-017-0481-3
- 28. Adam F., Hello K.M., Osman H. // Appl. Catal., A. 2010. V. 382. № 1. P. 115. https://doi.org/10.1016/j.apcata.2010.04.040
- 29. Rahman I.A., Vejayakumaran P., Sipaut C.S. et al. // Mater. Chem. Phys. 2009. V. 114. № 1. P. 328. https://doi.org/10.1016/j.matchemphys.2008.09.068
- 30. Szekeres M., Tóth J., Dékány I. // Langmuir. 2002. V. 18. № 7. P. 2678. https://doi.org/10.1021/la011370j
- 31. Xu J., Li K., Deng H. et al. // Fibers Polym. 2019. V. 20. № 1. P. 120. https://doi.org/10.1007/s12221-019-8284-6
- 32. Sangeetha V., Kanagathara N., Sumathi R. et al. // J. Mater. 2013. V. 2013. P. E262094. https://doi.org/10.1155/2013/262094
- 33. He L., Liu Y., Lin M. et al. // Sens. & Instrumen. Food Qual. 2008. V. 2. № 1. P. 66. https://doi.org/10.1007/s11694-008-9038-0