RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

High Temperature Mass Spectrometric Study of Vaporization of The Oxycarbide Ceramics Based on the MAX-Phases

PII
10.31857/S0044457X24030189-1
DOI
10.31857/S0044457X24030189
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 3
Pages
448-462
Abstract
In the present study, the vaporization processes of the carbide materials with the Ti2SiC, Ti3SiC2, Ti2AlC, Ti3AlC2, Zr2AlC, Zr3AlC2 chemical compositions containing the MAX-phases as well as the oxycarbide systems based on these materials with the addition of hafnia were examined by the Knudsen effusion mass spectrometric method up to the temperature 2200 K. It was established that the main vapor species over the samples with the Ti2AlC, Ti3AlC2, Zr2AlC, and Zr3AlC2 compositions at the temperature 1500 K was atomic aluminum. The samples containing silicon were less volatile compared to the carbide materials with aluminum and transferred into vapor at temperatures exceeding 1900 K to form gaseous Si, Si2, SiC2, and Si2C. The addition of hafnia to the carbides under study led to the formation of oxygen-containing vapor species, particularly Al2O and SiO, and to decrease in the total vapor pressure over the systems formed. It was shown that the samples of the oxycarbide Ti2SiC-HfO2 system were the least volatile materials, and, among the oxycarbide systems containing aluminum, the lowest volatility was observed for the samples of the Zr2AlC-HfO2 system in the case of the hafnia content up to 10 mol. % and of the Ti2AlC-HfO2 system for the higher HfO2 concentration.
Keywords
масс-спектрометрический эффузионный метод Кнудсена испарение карбидные МАХ-фазы давление пара
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
40

References

  1. 1. Barsoum M.W. // Prog. Solid State Chem. 2000. V. 28. № 1–4. P. 201. https://doi.org/10.1016/S0079-6786 (00)00006-6
  2. 2. Radovic M., Barsoum M.W. // Am. Ceram. Soc. Bull. 2013. V. 92. № 3. P. 20. https://bulletin-archive.ceramics.org/is-cacheable/1605850406926/ucujko.pdf
  3. 3. Gonzalez-Julian J. // J. Am. Ceram. Soc. 2021. V. 104. № 2. P. 659. https://doi.org/10.1111/jace.17544
  4. 4. Kovalev D.Y., Luginina M.A., Vadchenko S.G. // Russ. J. Inorg. Chem. 2017. V. 62. № 12. P. 1638. https://doi.org/10.1134/S0036023617120117
  5. 5. Simonenko E.P., Simonenko N.P., Nagornov I.A. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
  6. 6. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1838. https://doi.org/10.1134/S0036023622601222
  7. 7. Hoffman E.N., Vinson D.W., Sindelar R.L. et al. // Nucl. Eng. Des. 2012. V. 244. P. 17. https://doi.org/10.1016/j.nucengdes.2011.12.009
  8. 8. Lee W.E., Giorgi E., Harrison R. et al. // Ultra-High Temp. Ceram. Mater. Extrem. Environ. Appl. Hoboken: John Wiley & Sons, Inc., 2014. P. 391. https://doi.org/10.1002/9781118700853.ch15
  9. 9. Galvin T., Hyatt N.C., Rainforth W.M. et al. // Nucl. Mater. Energy. 2020. V. 22. P. 100725. https://doi.org/10.1016/j.nme.2020.100725
  10. 10. Альмяшев В.И., Столярова В.Л., Крушинов Е.В. и др. // Технологии обеспечения жизненного цикла ядерных энергетических установок. 2023. Т. 31. № 1. С. 60. https://doi.org/10.52069/2414-5726_2023_1_31_60
  11. 11. Wen Z., Tang Z., Meng H. et al. // Corros. Sci. 2022. V. 207. P. 110574. https://doi.org/10.1016/j.corsci.2022.110574
  12. 12. Казенас Е.К., Цветков Ю.В. // Испарение карбидов. М.: Красанд, 2017. https://www.rfbr.ru/rffi/portal/books/o_2053121
  13. 13. Rinehart G.H., Behrens R.G. // J. Chem. Thermodyn. 1980. V. 12. № 3. P. 205. https://doi.org/10.1016/0021-9614 (80)90038-5
  14. 14. Drowart J., De Maria G., Inghram M.G. // J. Chem. Phys. 1958. V. 29. № 5. P. 1015. https://doi.org/10.1063/1.1744646
  15. 15. Cao Z., Xie W., Jung I.H. et al. // Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci. 2015. V. 46. № 4. P. 1782. https://doi.org/10.1007/s11663-015-0344-8
  16. 16. Stearns C.A., Kohl F.J. // Mass spectrometric determination of the dissociation energies of titanium dicarbide and titanium tetracarbide. NASA Technical Note D-5653. Cleveland, 1970.
  17. 17. Li Y.L., Ishigaki T. // Mater. Sci. Eng. A. 2003. V. 345. № 1–2. P. 301. https://doi.org/10.1016/S0921-5093 (02)00506-3
  18. 18. Stearns C.A., Kohl F.J. // High-temperature mass spectrometry – Vaporization of group 4-B metal carbides. NASA Technical Note D-7613, Cleveland, 1974. https://ntrs.nasa.gov/search.jsp?R=19740012680 (accessed March 24, 2020)
  19. 19. Keast V.J., Harris S., Smith D.K. // Phys. Rev. B. 2009. V. 80. № 21. P. 214113. https://doi.org/10.1103/PhysRevB.80.214113
  20. 20. Sauceda D., Singh P., Falkowski A.R. et al. // npj Comput. Mater. 2021. V. 7. № 1. P. 6. https://doi.org/10.1038/s41524-020-00464-7
  21. 21. Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. V. 267. P. 124625. https://doi.org/10.1016/j.matchemphys.2021.124625
  22. 22. Perevislov S.N., Semenova V.V., Lysenkov A.S. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1100. https://doi.org/10.1134/S0036023621080210
  23. 23. Perevislov S.N., Arlashkin I.E., Lysenkov A.S. // Refract. Ind. Ceram. 2022. V. 63. № 2. P. 215. https://doi.org/10.1007/S11148-022-00709-6
  24. 24. Арлашкин И.Е., Перевислов С.Н. // Материаловедение. 2023. № 6. С. 16. https://doi.org/10.31044/1684-579X-2023-0-6-16-21
  25. 25. Arlashkin I.E., Perevislov S.N., Stolyarova V.L. // Russ. J. Gen. Chem. 2023. V. 93. № 4. P. 881. https://doi.org/10.1134/S107036322304014X
  26. 26. Perevislov S.N., Arlashkin I.E., Stolyarova V.L. // J. Am. Ceram. Soc. 2023. V. 107. P. 488. https://doi.org/10.1111/jace.19419
  27. 27. Hilpert K. // Rapid Commun. Mass Spectrom. 1991. V. 5. № 4. P. 175. https://doi.org/10.1002/rcm.1290050408
  28. 28. Drowart J., Chatillon C., Hastie J. et al. // Pure Appl. Chem. 2005. V. 77. № 4. P. 683. https://doi.org/10.1351/pac200577040683
  29. 29. Lopatin S.I., Shugurov S.M., Tyurnina Z.G. et al. // Glass Phys. Chem. 2021. V. 47. № 1. P. 38. https://doi.org/10.1134/S1087659621010077
  30. 30. Lopatin S.I. // Glass Phys. Chem. 2022. V. 48. № 2. P. 117. https://doi.org/10.1134/S1087659622020055
  31. 31. Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. № 3. P. 371. https://doi.org/10.1351/pac197231030371
  32. 32. Mann J.B. // J. Chem. Phys. 1967. V. 46. № 5. P. 1646. https://doi.org/10.1063/1.1840917
  33. 33. Meyer R.T., Lynch A.W. // High Temp. Sci. 1973. V. 5. № 3. P. 192.
  34. 34. Lias S.G., Bartmess J.E., Liebman J.F. et al. // J. Phys. Chem. Ref. Data. 1988. V. 17. Suppl. 1. P. 861.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library