RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Modeling of the Phase Equilibria in the La2O3–SrO–ZrO2 System Using the NUCLEA Database

PII
10.31857/S0044457X24030176-1
DOI
10.31857/S0044457X24030176
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 3
Pages
433-447
Abstract
The goal of this study was to examine the phase equilibria in the La2O3–SrO–ZrO2 system, which is promising as a base for the development of high-temperature ceramics and materials with unique optical, electrochemical, and catalytic properties. Thermodynamic modeling of the phase equilibria in the system under consideration was carried out using the NUCLEA database and the GEMINI2 Gibbs energy minimizer. As a result, thirteen isothermal and one polythermal sections of the phase diagram of the La2O3–SrO–ZrO2 system were calculated in the temperature range 600-3023 K. The obtained data on the phase equilibria in the La2O3–SrO–ZrO2 system were discussed in comparison with the known information for the corresponding binary systems. The phase relations in the system under study were shown to correlate completely with the presence of the phases present in the corresponding binary systems. Temperature changes in the phase relations and boundaries of single-phase, two-phase, and three-phase regions in the system under study were considered. Four ternary eutectic points were identified at the temperatures equal to 2039 K, 2105 K, 2120 K, and 2351 K.
Keywords
фазовые равновесия диаграммы состав–температура CALPHAD термодинамическое моделирование база данных NUCLEA
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Sarkar A., Djenadic R., Wang D. et al. // J. Eur. Ceram. Soc. 2018. V. 38. № 5. P. 2318. https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
  2. 2. Vinnik D.A., Trofimov E.A., Zhivulin V.E. et al. // Nanomaterials. 2020. V. 10. № 2. P. 268. https://doi.org/10.3390/NANO10020268
  3. 3. Zaitseva O.V., Gudkova S.A., Trofimov E.A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2021. V. 1014. № 1. P. 012060. https://doi.org/10.1088/1757-899X/1014/1/012060
  4. 4. Ma W., Jin X.-L., Ren Y. et al. // ITSC Proc. 2015. P. 867. https://doi.org/10.31399/asm.cp.itsc2015p0867
  5. 5. Nalbandian L., Evdou A., Zaspalis V. // Int. J. Hydrogen Energy. 2011. V. 36. № 11. P. 6657. https://doi.org/10.1016/j.ijhydene.2011.02.146
  6. 6. Keller M., Anderson D.P., Leion H. et al. // Appl. Catal., A: Gen. 2018. V. 550. P. 105. https://doi.org/10.1016/j.apcata.2017.10.020
  7. 7. Klimkowicz A., Świerczek K., Takasaki A. et al. // Solid State Ionics. 2014. V. 257. P. 23. https://doi.org/10.1016/j.ssi.2014.01.018
  8. 8. Speakman S.A., Carneim R.D., Payzant E.A. et al. // J. Mater. Eng. Perform. 2004. V. 13. № 3. P. 303. https://doi.org/10.1361/10599490419270
  9. 9. Dąbrowa J., Olszewska A., Falkenstein A. et al. // J. Mater. Chem. A. 2020. V. 8. № 46. P. 24455. https://doi.org/10.1039/d0ta06356h
  10. 10. Antonova E., Tropin E., Khodimchuk A. // Ionics. 2022. V. 28. № 11. P. 5181. https://doi.org/10.1007/s11581-022-04750-w
  11. 11. Yan J., Wang D., Zhang X. et al. // J. Mater. Sci. 2020. V. 55. № 16. P. 6942. https://doi.org/10.1007/s10853-020-04482-0
  12. 12. Shestakov V.A., Grachev E.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 488. https://doi.org/10.1134/S0036023622040179
  13. 13. Vorozhtcov V.A., Stolyarova V.L. // Tech. Phys. 2021. V. 66. № 6. P. 872. https://doi.org/10.1134/S1063784221060219
  14. 14. Lutsyk V.I., Zelenaya A.E. // Russ. J. Inorg. Chem. 2018. V. 63. № 7. P. 966. https://doi.org/10.1134/S0036023618070148
  15. 15. Lutsyk V.I., Zelenaya A.E. // Russ. J. Inorg. Chem. 2018. V. 63. № 8. P. 1087. https://doi.org/10.1134/S0036023618080132
  16. 16. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I. et al. // Glass Phys. Chem. 2021. V. 47. № 6. P. 616. https://doi.org/10.1134/S1087659621060328
  17. 17. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 894. https://doi.org/10.1134/S003602362106022X
  18. 18. Hillert M. // Int. Met. Rev. 1985. V. 30. № 1. P. 45. https://doi.org/10.1179/imtr.1985.30.1.45
  19. 19. Vorob’eva V., Zelenaya A., Lutsyk V. et al. // Mater. Sci. Eng., B. 2023. V. 297. P. 116790. https://doi.org/10.1016/J.MSEB.2023.116790
  20. 20. Saunders N., Miodownik A.P. CALPHAD (Calculation of Phase Diagrams) : A Comprehensive Guide. Oxford: Pergamon Materials Series, 1998. 478 p. https://www.elsevier.com/books/calphad-calculation-of-phase-diagrams-a-comprehensive-guide/saunders/978-0-08-042129-2 (accessed May 14, 2020)
  21. 21. Lukas H.L., Fries S.G., Sundman B. Computational thermodynamics: The Calphad method. N.Y.: Cambridge University Press, 2007. 324 p. https://doi.org/10.1017/CBO9780511804137
  22. 22. Andersson J.O., Helander T., Höglund L. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2002. V. 26. № 2. P. 273. https://doi.org/10.1016/S0364-5916 (02)00037-8
  23. 23. Davies R.H., Dinsdale A.T., Gisby J.A. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2002. V. 26. № 2. P. 229. https://doi.org/10.1016/S0364-5916 (02)00036-6
  24. 24. Bale C.W., Chartrand P., Degterov S.A. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2002. V. 26. № 2. P. 189. https://doi.org/10.1016/S0364-5916 (02)00035-4
  25. 25. Bakardjieva S., Barrachin M., Bechta S. et al. // Prog. Nucl. Energy. 2010. V. 52. № 1. P. 84. https://doi.org/10.1016/j.pnucene.2009.09.014
  26. 26. NUCLEA: Thermodynamic database for nuclear applications [Электронный ресурс]. URL: http://thermodata.online.fr/nuclea.html (дата обращения 30.03.2020).
  27. 27. Guéneau C., Dupin N., Kjellqvist L. et al. // Calphad. 2021. V. 72. P. 102212. https://doi.org/10.1016/j.calphad.2020.102212
  28. 28. Stolyarova V.L. // Russ. Chem. Rev. 2016. V. 85. № 1. P. 60. https://doi.org/10.1070/RCR4549
  29. 29. Bechta S.V., Granovsky V.S., Khabensky V.B. et al. // Nucl. Eng. Des. 2008. V. 238. № 10. P. 2761. https://doi.org/10.1016/J.NUCENGDES.2008.04.018
  30. 30. Vorozhtcov V.A., Yurchenko D.A., Almjashev V.I. et al. // Glass Phys. Chem. 2021. V. 47. № 5. P. 417. https://doi.org/10.1134/S1087659621050175
  31. 31. Ворожцов В.А., Альмяшев В.И., Столярова В.Л. Расчет сечений фазовой диаграммы системы Zr-C-O с использованием базы данных NUCLEA / Под ред. Гельфонда Н.В. // Тез. докл. Симп. с международным участием «Термодинамика и материаловедение». Новосибирск: ИНХ СО РАН, 2023. С. 76. https://doi.org/10.26902/THERM_2023_056
  32. 32. Sundman B., Ågren J. // J. Phys. Chem. Solids. 1981. V. 42. № 4. P. 297. https://doi.org/10.1016/0022-3697 (81)90144-X
  33. 33. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
  34. 34. Lopato L.M. // Ceramurg. Int. 1976. V. 2. № 1. P. 18. https://doi.org/10.1016/0390-5519 (76)90004-1
  35. 35. Grundy A.N., Hallstedt B., Gauckler L.J. // Acta Mater. 2002. V. 50. № 9. P. 2209. https://doi.org/10.1016/S1359-6454 (01)00432-3
  36. 36. Kitaguchi H., Ohno M., Kaichi M. et al. // J. Ceram. Soc. Jpn. 1988. V. 96. № 4. P. 397. https://doi.org/10.2109/jcersj.96.397
  37. 37. Gavrilova L.Y., Aksenova T.V., Cherepanov V.A. // Russ. J. Inorg. Chem. 2008. V. 53. № 6. P. 953. https://doi.org/10.1134/S0036023608060235
  38. 38. Zhang W.-W., Povoden-Karadeniz E., Shang Y. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 10. P. 4419. https://doi.org/10.1016/j.jeurceramsoc.2023.03.026
  39. 39. Schulze A.-R., Müller-Buschbaum H. // Z. Anorg. Allg. Chem. 1980. V. 471. № 1. P. 59. https://doi.org/10.1002/zaac.19804710106
  40. 40. Huang Z.K., Yan D.S., Tien T.Y. et al. // Mater. Lett. 1991. V. 11. № 8–9. P. 286. https://doi.org/10.1016/0167-577X (91)90204-J
  41. 41. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
  42. 42. Wang C., Fabrichnaya O., Zinkevich M. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2008. V. 32. № 1. P. 111. https://doi.org/10.1016/j.calphad.2007.07.005
  43. 43. Zinkevich M. // Prog. Mater. Sci. 2007. V. 52. № 4. P. 597. https://doi.org/10.1016/J.PMATSCI.2006.09.002
  44. 44. Fabrichnaya O., Lakiza S., Wang C. et al. // J. Alloys Compd. 2008. V. 453. № 1–2. P. 271. https://doi.org/10.1016/j.jallcom.2006.11.102
  45. 45. Rouanet A. // Rev. Int. des Hautes Temp. des Refract. 1971. V. 8. № 2. P. 161.
  46. 46. Traverse J.P., Foex M. // High Temp. - High Press. 1969. V. 1. P. 409.
  47. 47. Noguchi T., Okubo T., Yonemochi O. // J. Am. Ceram. Soc. 1969. V. 52. № 4. P. 178. https://doi.org/10.1111/J.1151-2916.1969.TB13360.X
  48. 48. Dash S., Sood D.D., Prasad R. // J. Nucl. Mater. 1996. V. 228. № 1. P. 83. https://doi.org/10.1016/0022-3115 (95)00199-9
  49. 49. Gong W., Xie Y., Zhao Z. et al. // J. Am. Ceram. Soc. 2020. V. 103. № 2. P. 1425. https://doi.org/10.1111/jace.16812
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library