RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis, Ion-Exchange and Photocatalytic Properties of Layered Perovskite-Like CsBa2Nb3O10 Niobate: Comparative Analysis with Related AA′2Nb3O10 Dion-Jacobson Phases (A = K, Rb, Cs; A′ = Ca, Sr, Pb)

PII
10.31857/S0044457X24030112-1
DOI
10.31857/S0044457X24030112
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 3
Pages
373-384
Abstract
Layered perovskite-like niobate CsBa2Nb3O10 has been synthesized in a pure single-phase state for the first time using both nitrates and carbonates of cesium and barium. Unlike its Ca-, Sr- and Pb-containing analogues, the niobate obtained was shown not to undergo substitution of interlayer alkali cations with protons (protonation) upon acid treatments under various conditions. A potential reason for its chemical inactivity may consist in partial disordering of cesium and barium cations between the interlayer space and perovskite slab, hindering the interlayer ion exchange. Optical bandgap energy of CsBa2Nb3O10, being equal to 2.8 eV, potentially allows using visible light (λ < 443 nm) for driving photocatalytic reactions. However, the photocatalytic potential of this niobate towards hydrogen production remains untapped since the activity of the interlayer space in protonation and hydration reactions, as shown earlier, is a fundamentally important factor determining the photocatalytic performance of ion-exchangeable layered perovskite-like oxides.
Keywords
разупорядочение протонирование гидратация фотокатализ водород
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Dion M., Ganne M., Tournoux M. // Mater. Res. Bull. 1981. V. 16. № 11. P. 1429. https://doi.org/10.1016/0025-5408 (81)90063-5
  2. 2. Domen K., Ebina Y., Sekine T. et al. // Catal. Today. 1993. V. 16. № 3–4. P. 479. https://doi.org/10.1016/0920-5861 (93)80088-I
  3. 3. Jacobson A.J., Lewandowski J.T., Johnson J.W. // J. Less Common Met. 1986. V. 116. № 1. P. 137. https://doi.org/10.1016/0022-5088 (86)90224-9
  4. 4. Kawaguchi T., Horigane K., Itoh Y. et al. // Phys. B: Condens. Matter. 2018. V. 536. P. 830. https://doi.org/10.1016/j.physb.2017.09.060
  5. 5. Fang L., Zhang H., Yuan R. // J. Wuhan University of Technology-Mater. Sci. Ed. 2002. V. 17. № 2. P. 3. https://doi.org/10.1007/BF02832614
  6. 6. Mahler C.H., Cushing B.L., Lalena J.N. et al. // Mater. Res. Bull. 1998. V. 33. P. 1581. https://doi.org/10.1016/S0025-5408 (98)00166-4
  7. 7. Fang M., Kim C.H., Mallouk T.E. // Chem. Mater. 1999. V. 11. P. 1519. https://doi.org/10.1021/cm981065s
  8. 8. Yoshimura J., Ebina Y., Kondo J. et al. // J. Phys. Chem. 1993. V. 97. № 9. P. 1970. https://doi.org/10.1021/j100111a039
  9. 9. Liou Y., Wang C.M. // J. Electrochem. Soc. 1996. V. 143. № 5. P. 1492. https://doi.org/10.1149/1.1836668
  10. 10. Ziegler C., Dennenwaldt T., Weber D. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. № 21. P. 1668. https://doi.org/10.1002/zaac.201700269
  11. 11. Fukuoka H., Isami T., Yamanaka S. // J. Solid State Chem. 2000. V. 151. № 1. P. 40. https://doi.org/10.1006/jssc.2000.8619
  12. 12. Schaak R.E., Mallouk T.E. // Chem. Mater. 2002. V. 14. № 4. P. 1455. https://doi.org/10.1021/cm010689m
  13. 13. Tahara S., Sugahara Y. // Langmuir. 2003. V. 19. № 22. P. 9473. https://doi.org/10.1021/la0343876
  14. 14. Tahara S., Takeda Y., Sugahara Y. // Chem. Mater. 2005. V. 17. № 16. P. 6198. https://doi.org/10.1021/cm0514793
  15. 15. Shimada A., Yoneyama Y., Tahara S. et al. // Chem. Mater. 2009. V. 21. № 18. P. 4155. https://doi.org/10.1021/cm900228c
  16. 16. Khramova A.D., Silyukov O.I., Kurnosenko S.A. et al. // Molecules. 2023. V. 28. № 12. P. 4807. https://doi.org/10.3390/molecules28124807
  17. 17. Voytovich V.V., Kurnosenko S.A., Silyukov O.I. et al. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.00300
  18. 18. Voytovich V.V., Kurnosenko S.A., Silyukov O.I. et al. // Catalysts. 2021. V. 11. № 8. P. 897. https://doi.org/10.3390/catal11080897
  19. 19. Ebina Y., Sasaki T., Watanabe M. // Solid State Ionics. 2002. V. 151. P. 177. https://doi.org/10.1016/S0167-2738 (02)00707-5
  20. 20. Sasaki T. // J. Ceram. Soc. Jpn. 2007. V. 115. № 1337. P. 9. https://doi.org/10.2109/jcersj.115.9
  21. 21. Nicolosi V., Chhowalla M., Kanatzidis M.G. et al. // Science. 2013. V. 340. № 6139. P. 1226419. https://doi.org/10.1126/science.1226419
  22. 22. Wang T.H., Henderson C.N., Draskovic T.I. et al. // Chem. Mater. 2014. V. 26. № 2. P. 898. https://doi.org/10.1021/cm401803d
  23. 23. Gao H., Shori S., Chen X. et al. // J. Colloid Interface Sci. 2013. V. 392. P. 226. https://doi.org/10.1016/j.jcis.2012.09.079
  24. 24. Sakaki M., Feng Y.Q., Kajiyoshi K. // J. Solid State Chem. 2019. V. 277. № June. P. 253. https://doi.org/10.1016/j.jssc.2019.06.018
  25. 25. Han Y.-S., Park I., Choy J.-H. // J. Mater. Chem. 2001. V. 11. № 4. P. 1277. https://doi.org/10.1039/b006045n
  26. 26. Lee W.-J., Yeo H.J., Kim D.-Y. et al. // Bull. Korean Chem. Soc. 2013. V. 34. № 7. P. 2041. https://doi.org/10.5012/bkcs.2013.34.7.2041
  27. 27. Hashemzadeh F. // Water Sci. Technol. 2016. V. 73. № 6. P. 1378. https://doi.org/10.2166/wst.2015.610
  28. 28. Kweon S.-H., Im M., Lee W.-H. et al. // J. Mater. Chem. C. 2016. V. 4. № 1. P. 178. https://doi.org/10.1039/C5TC03815D
  29. 29. Thangadurai V., Schmid-Beurmann P., Weppner W. // J. Solid State Chem. 2001. V. 158. № 2. P. 279. https://doi.org/10.1006/jssc.2001.9108
  30. 30. Zahedi E., Hojamberdiev M., Bekheet M.F. // RSC Adv. 2015. V. 5. № 108. P. 88725. https://doi.org/10.1039/c5ra13763b
  31. 31. Reddy J.R., Kurra S., Guje R. et al. // Ceram. Int. 2015. V. 41. № 2. P. 2869. https://doi.org/10.1016/j.ceramint.2014.10.109
  32. 32. Henderson C.N. // Studies on the exfoliation, reassembly and applications of layered materials, The Pennsylvania State University, 2013.
  33. 33. Rodionov I.A., Maksimova E.A., Pozhidaev A.Y. et al. // Front. Chem. 2019. V. 7. № December. P. 1. https://doi.org/10.3389/fchem.2019.00863
  34. 34. Rodionov I.A., Gruzdeva E.O., Mazur A.S. et al. // Catalysts. 2022. V. 12. № 12. P. 1556. https://doi.org/10.3390/catal12121556
  35. 35. Kurnosenko S.A., Voytovich V.V., Silyukov O.I. et al. // Catalysts. 2023. V. 13. № 4. P. 749. https://doi.org/10.3390/catal13040749
  36. 36. Kurnosenko S.A., Voytovich V.V., Silyukov O.I. et al. // Catalysts. 2021. V. 11. № 11. P. 1279. https://doi.org/10.3390/catal11111279
  37. 37. Kurnosenko S.A., Voytovich V.V., Silyukov O.I. et al. // Catalysts. 2023. V. 13. № 3. P. 614. https://doi.org/10.3390/catal13030614
  38. 38. Zvereva I.A., Silyukov O.I., Chislov M.V. // Russ. J. Gen. Chem. 2011. V. 81. № 7. P. 1434. https://doi.org/10.1134/S1070363211070061
  39. 39. Kurnosenko S.A., Burov A.A., Silyukov O.I. et al. // Glass. Phys. Chem. 2023. V. 49. № 2. P. 160. https://doi.org/10.1134/S1087659622600971
  40. 40. Yafarova L.V., Silyukov O.I., Myshkovskaya T.D. et al. // J. Therm. Anal. Calorim. 2021. V. 143. № 1. P. 87. https://doi.org/10.1007/s10973-020-09276-9
  41. 41. Jehng J.-M., Wachs I.E. // Chem. Mater. 1991. V. 3. № 7. P. 100. https://doi.org/10.1021/cm00013a025
  42. 42. Hong Y., Kim S.-J. // Bull. Korean Chem. Soc. 1996. V. 17. № 8. P. 730.
  43. 43. Zvereva I., Smimov Y., Gusarov V. et al. // Solid State Sci. 2003. V. 5. № 2. P. 343. https://doi.org/10.1016/S1293-2558 (02)00021-3
  44. 44. Tugova E.A. // Russ. J. Inorg. Chem. 2022. V. 67. № 6. P. 874. https://doi.org/10.1134/S0036023622060237
  45. 45. Shtarev D.S., Shtareva A.V., Petrova A.Y. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1368. https://doi.org/10.1134/S0036023622090145
  46. 46. Shibata H., Ogura Y., Sawa Y. et al. // Biosci. Biotechnol. Biochem. 1998. V. 62. № 12. P. 2306. https://doi.org/10.1271/bbb.62.2306
  47. 47. Nosaka Y., Nosaka A. // ACS Energy Lett. 2016. V. 1. № 2. P. 356. https://doi.org/10.1021/acsenergylett.6b00174
  48. 48. Cui W., Liu L., Ma S. et al. // Catal. Today. 2013. V. 207. P. 44. https://doi.org/10.1016/j.cattod.2012.05.009
  49. 49. Xiao N., Li S., Li X. et al. // Chinese J. Catal. 2020. V. 41. № 4. P. 642. https://doi.org/10.1016/S1872-2067 (19)63469-8
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library