RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis and Phase Formation in Ba0.9Ca0.1Zr0.05M0.10Ti0.85O3 (M = Mn, Fe, Co) Ceramics with Controllable Magnetic and Optical Properties

PII
10.31857/S0044457X24030105-1
DOI
10.31857/S0044457X24030105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 3
Pages
364-372
Abstract
Ceramic samples with perovskite structure of Ba0.9Ca0.1Zr0.05M0.10Ti0.85O3 (M = Mn, Fe, Co) were obtained by standard solid-phase synthesis methods. The processes of phase formation of samples by methods of X-ray phase analysis have been investigated, the parameters of unit cells have been determined. Magnetic and optical properties of the obtained samples were investigated by methods of magnetic susceptibility and diffuse reflection spectroscopy. It was found that the phase composition, as well as magnetic and optical properties depend on the nature of the introduced paramagnetic element.
Keywords
структура перовскита магнитная восприимчивость дифракция рентгеновских лучей высокоэнтропийные системы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Žužić A., Ressle A., Macan J. // Ceram. Int. 2022. V. 48. № 19. P. 27240. https://doi.org/10.1016/j.ceramint.2022.06.152
  2. 2. Папынов Е.К., Белов А.А., Шичалин О.О и др. // Журн. неорган. химии. 2021. Т. 66. № 5. С. 592. https://doi.org/10.31857/S0044457X21050135
  3. 3. Goldschmidt V.M. // Naturwissenschaften. 1926. V. 14. № 21. P. 477. https://doi.org/10.1007/BF01507527
  4. 4. Yang Y., Wang Y., Yang Z. et al. // J. Power Sources. 2019. V. 438. P. 22689. https://doi.org/10.1016/j.jpowsour.2019.226989
  5. 5. Garg C., Roy D., Lonsky M. et al. // Phys. Rev. B. 2021. V. 103. https://doi.org/10.1103/PhysRevB.103.014437
  6. 6. Chung S.Y., Kim I.D., Kang S.J. // Nat. Mat. 2004. V. 3. P. 774. https://doi.org/10.1038/nmat1238
  7. 7. Hoang K. // Phys. Rev. Mat. 2017. V. 1. № 7. P. 075403. https://doi.org/10.1103/PhysRevMaterials.1.075403
  8. 8. Никольская А.Б., Козлов С.С., Карягина О.К. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 862. https://doi.org10.31857/S0044457X22060174
  9. 9. Jiang S., Hu T., Gild J. et al. // Scripta Mater. 2018. V. 142. P. 116. https://doi.org/10.1016/j.scriptamat.2017.08.040
  10. 10. Biesuz M., Fu S., Dong J. et al. // J. Asian Ceram. Soc. 2019. V. 7. P. 127. https://doi.org/10.1080/21870764.2019.1595931
  11. 11. Witte R., Sarkar A., Kruk R. et al. // Phys. Rev. Mat. 2019. V. 3. P. 034406. https://doi.org/10.1103/PhysRevMaterials.3.034406
  12. 12. Mao A., Xiang H., Zhang Z. et al. // J. Magn. Magn. Mater. 2020. V. 497. № 1. P. 165884. https://doi.org/10.1016/j.jmmm.2019.165884
  13. 13. Бобрышева Н.П., Селютин А.А., Козин А.О. // Журн. общ. химии. 2014. Т. 84. № 3. С. 355.
  14. 14. Ren K., Wang Q., Shao G. et al. // Scripta Mater. 2020. V. 178. P. 382. https://doi.org/10.1016/j.scriptamat.2019.12.006
  15. 15. Zhao Z., Xiang H., Dai F-Z. et al. // J. Mater. Sci. Technol. 2019. V. 35. № 11. P. 2647. https://doi.org/10.1016/j.jmst.2019.05.054
  16. 16. Zhang K., Li W., Zeng J. et al. // J. Alloys Compd. 2020. V. 817. https://doi.org/10.1016/j.jallcom.2019.153328
  17. 17. Jiang S., Hu T., Gild J. et al. // Scripta Mater. 2018. V. 142. № 1. P. 116. https://doi.org/10.1016/j.scriptamat.2017.08.040
  18. 18. Sarkar A., Djenadic R., Wang D. et al. // J. Eur. Ceram. Soc. 2018. V. 38. P. 2318. https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
  19. 19. Biesuz M., Fu S., Dong J. et al. // J. Asian Ceram. Soc. 2019. V. 7. P. 127. https://doi.org/10.1080/21870764.2019.1595931
  20. 20. Sharma Y., Musico B.L., Gao X. et al. // Phys. Rev. Mater. 2018. V. 2. P. 060404. https://doi.org/10.1103/PhysRevMaterials.2.060404
  21. 21. Zhong Y., Sabarou H., Yan X. et al. // Mater. Des. 2019. V. 182. P. 108060. https://doi.org/10.1016/j.matdes.2019.108060
  22. 22. Гельчинский Б.Р., Балякин И.А., Юрьев А.А. и др. // Успехи химии. 2022. Т. 91. № 6. P. RCR5023. https://doi.org/10.1070/RCR5023
  23. 23. Oses C., Toher C., Curtarolo S. // Nat. Rev. Mater. 2020 V. 5. P. 295. https://doi.org/10.1038/s41578-019-0170-8
  24. 24. Venkatesh G., Blessto В., Santhosh K.R. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 314. Art. 653. https://doi.org/10.1088/1757-899X/314/1/012010
  25. 25. Toher C., Oses C., Esters M. et al. // MRS Bull. 2022. V. 47. P. 194. https://doi.org/10.1557/s43577-022-00281-x
  26. 26. Hao J., Bai W., Li W., Zhai J. // J. Am. Ceram. Soc. 2012. V. 95. № 6. P. 1998. https://doi.org/10.1111/j.1551-2916.2012.05146.x
  27. 27. Mezzourh H., Belkhadir S., Mezzane D. et al. // Phys. B. 2021. V. 603. P. 412760. https://doi.org/10.1016/j.physb.2020.412760
  28. 28. Shankar J., KumarA.S., Sudheer Kumar R.V. // Ferroelectrics. 2023. V. 606. № 1. P. 207. https://doi.org/10.1080/00150193.2023.2189837
  29. 29. Селютин А.А., Ширкин А.Ю., Касаткин И.А. и др. // Журн. общ. химии. 2015. Т. 85. № 3. С. 506.
  30. 30. Rani A., Kolte J. Gopalan P. // Appl. Phys. A. 2022. V. 128. P. 442. https://doi.org/10.1007/s00339-022-05523-y
  31. 31. Liu R., Chen Z., Lu Z. et al. // Ceram. Int. 2022. V. 48. № 2. P. 2377. https://doi.org/10.1016/j.ceramint.2021.10.018
  32. 32. Chakraborty A., Liton M.N.H., Sarker M.S.I. et al. // Physica B: Condens. Matter. 2023. V. 648. https://doi.org/10.1016/j.physb.2022.414418
  33. 33. Shangguan M., Zhang X., Wang C. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 15. P. 6883. https://doi.org/10.1016/j.jeurceramsoc.2023.06.038
  34. 34. Derkaoui I., Achehboune M., Boukhoubza I. et al. // Comput. Mater. Sci. 2023. V. 217. P. 111913. https://doi.org/10.1016/j.commatsci.2022.111913
  35. 35. Meng Y., Liu K., Zhang X. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 9. P. 5725. https://doi.org/10.1111/jace.18512
  36. 36. Sherlin Vinita V., Sahaya Jude Dhas S., Suresh S. et al. // J. Magn. Magn. Mater. 2023. V. 565. https://doi.org/10.1016/j.jmmm.2022.170251
  37. 37. Wang S., Zhu T., Sabatini R. et al. // Adv. Mater. 2022. V. 34. https://doi.org/10.1002/adma.202207261
  38. 38. Shannon R.D., Prewitt C.T. // Acta Crystallogr., Sect. B. 1969. V. 25. P. 925. https://doi.org10.1107/S0567740869003220
  39. 39. Калинников В.Т., Ракитин Ю.В. Введение в магнетохимию. Метод статической магнитной восприимчивости в химии. М.: Наука, 1980. 302 c.
  40. 40. Ракитин Ю.В., Калинников В.Т. Современная магнетохимия. СПб.: Наука, 1994. 276 с.
  41. 41. Федорова А.В., Чежина Н.В. // Журн. общ. химии. 2019. Т. 89. № 6. С. 917. https://doi.org10.1134/S0044460X19060099
  42. 42. Федорова А.В., Чежина Н.В., Пономарева Е.А. и др. // Журн. общ. химии. 2023. Т. 93. № 1. С. 135. https://doi.org10.31857/S0044460X23010158
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library