RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis and Physicochemical Characterization of Solid Oxide Electrolyte and Electrode Materials for Medium Temperature Fuel Cells

PII
10.31857/S0044457X24030037-1
DOI
10.31857/S0044457X24030037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 3
Pages
286-293
Abstract
Finely dispersed СeO2–Nd2O3 and Gd2O3–La2O3–SrO–Ni(Co)2O3–δ mesoporous powders are synthesized by co-crystallization of the corresponding nitrates solutions with ultrasonic treatment and used to prepare nanoceramic materials with a fluorite-like, orthorhombic perovskite and tetragonal perovskite crystal structures respectively with CSR ~ 55–90 нм (1300ºC). The study of physicochemical properties of the obtained ceramic materials revealed an open porosity 7–11% for СeO2–Nd2O3 and 17–42% for Gd2O3–La2O3–SrO–Ni(Co)2O3–ä. Cerium oxide-based materials possess a predominantly ionic electrical conductivity with σ700ºС = 0.31 · 10–2 S/cm (ion transfer number ti = 0.71–0.89 in the temperature range 300–700°C) due to the formation of mobile oxygen vacancies at heterovalent substitution of Nd3+ for Се4+. Solid solutions based on lanthanum nickelate and cobaltite feature a mixed electronic-ionic conductivity with σ700°С = 0.59 ∙ 10–1 S/cm with the electron and ion transfer numbers te = 0.92–0.99 and ti = 0.08–0.01. The obtained ceramic materials are shown to be promising as solid oxide electrolyrtes and electrodes for medium temperature fuel cells.
Keywords
совместная кристаллизация солей нанокерамика диоксид церия кобальтит гадолиния проводимость
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Maric R., Mirshekari G. Solid oxide fuel cells from fundamental principles to complete system. CRC Press, 2021. 256 p.
  2. 2. Пономарева А.А., Иванова А.Г., Шилова О.А. и др. // Физика и химия стекла. 2016. Т. 42. № 1. С. 7.
  3. 3. Ponomareva A., Babushok V., Simonenko E. et al. // J. Sol-Gel Sci. Technol. 2018. V. 87. № 1. P. 74. https://doi.org/10.1007/s10971-018-4712-0
  4. 4. Galushko A.S., Panova G.G., Ivanova A.G. et al. // J. Ceram. Sci. Technol. 2017. V. 8. № 4. Р. 433. https://doi.org/10.4416/JCST2017-00041
  5. 5. Pachauri Y.K., Chauhan R.P. // Renew. Sustain. Energy Rev. 2015. V. 43. P. 1301. https://doi.org/10.1016/j.rser.2014.11.098
  6. 6. Касьянова А.В., Тарутина Л.Р., Руденко А.О. и др. // Успехи химии. 2020. Т. 89. № 6. С. 667.
  7. 7. Пикалова Е.Ю., Калинина Е.Г. // Успехи химии. 2021. Т. 90. № 6. С. 703.
  8. 8. Пальгуев С.Ф., Гильдерман В.К., Земцов В.И., Неуймин А.Д. Высокотемпературные оксидные электронные проводники для электрохимических устройств. М.: Наука, 1990. 196 с.
  9. 9. SadykovV., Usoltsev V., Yeremeev N. et al. // J. Eur. Ceram. Soc. 2013. V. 33. № 12. P. 2241. https://doi.org/10.1016/j.jeurceramsoc.2013.01.007
  10. 10. Симоненко Т.Л., Симоненко Н.П., Симоненко Е.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 5. С. 610.
  11. 11. Истомин С.Я., Лысков Н.В., Мазо Г.Н. и др. // Успехи химии. 2021. Т. 90. № 6. С. 644.
  12. 12. Sadykov V.A., Pavlova S.N., Kharlamova T.S. et al. // Perovskites: structure, properties and uses. Nova Science Publishers, 2010. P. 67.
  13. 13. Сальников В.В., Пикалова Е.Ю. // Физика тверд. тела. 2015. Т. 57. № 10. С. 1895.
  14. 14. Moghadasi M., Li M., Ma C. et al. // Ceram. Int. 2020. V. 46. № 10. P. 16966. https://doi.org/10.1016/j.ceramint.2020.03.280
  15. 15. Fathy A., Wagih A., Abu-Oqail A. // Ceram. Int. 2019. V. 45. № 2. P. 2319. https://doi.org/10.1016/j.ceramint.2018.10.147
  16. 16. Li Z., He Q., Xia L. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 6. P. 4047. https://doi.org/10.1016/j.ijhydene.2021.11.022
  17. 17. Prasad D.H., Son J.W., Kim B.K. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 3107. https://doi.org/10.1016/j.jeurceramsoc.2008.05.021
  18. 18. Fedorenko N.Yu., Mjakin S.V., Khamova T.V. et al. // Ceram. Int. 2022. V. 48. P. 6245. https://doi.org/10.1016/j.ceramint.2021.11.165
  19. 19. Коваленко А.С., Шилова О.А., Морозова Л.В. и др. // Физика и химия стекла. 2014. Т. 40. № 1. С. 135.
  20. 20. Duran P., Villegas M., Capel F. et al. // J. Eur. Ceram. Soc. 1996. V. 16. P. 945. https://doi.org/10.1016/0955-2219 (96)00015-5
  21. 21. Шилова О.А., Антипов В.Н., Тихонов П.А. и др. // Физика и химия стекла. 2013. Т. 39. № 5. С. 803.
  22. 22. Пивоварова А.П., Страхов В.И., Попов В.П. // Письма в ЖТФ. 2002. Т. 28. № 19. С. 43.
  23. 23. Гращенков Д.В., Балинова Ю.А., Тинякова Е.В. // Стекло и керамика. 2012. № 4. С. 32.
  24. 24. Стрекаловский В.Н., Полежаев Ю.М., Пальгуев С.Ф. Оксиды с примесной разупорядоченностью: состав, структура, фазовые превращения. М.: Наука, 1987. 160 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library