- Код статьи
- 10.31857/S0044457X24020135-1
- DOI
- 10.31857/S0044457X24020135
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 2
- Страницы
- 258-267
- Аннотация
- Ферриты цветных металлов являются многообещающими магнитными катализаторами, которые после использования легко отделить от реакционной смеси с помощью магнитного поля. Однако характерное для них быстрое время электронно-дырочной релаксации снижает их активность в фотореакциях. Данная проблема решается получением гибридных наноструктур на основе ферритов, например композитов с оксидом цинка. Каталитическая активность таких структур в значительной степени зависит от метода их синтеза. В данной работе для получения наиболее стехиометричного и однородного по составу и структуре прекурсора феррита никеля использовано щелочное соосаждение ионов Fe2+ и Ni2+, имеющих близкие значения ПР гидроксидов. Методом планирования и обработки результатов эксперимента исследовано влияние реакционных параметров на содержание фазы феррита никеля и размер полученных частиц. В найденных оптимальных условиях синтезированы сферические наночастицы диаметром 15.9 ± 1.1 нм. На основе полученного материала и оксида цинка сформированы магнитные композиты различного количественного состава. Фотокаталитическая активность гибридных структур показана на примере фотодеградации красителя кристаллического фиолетового.
- Ключевые слова
- феррит оксид цинка магнитные композиты фотокатализ щелочное осаждение
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 12
Библиография
- 1. Литюк Л.М., Журавлев Г.И. Химия и технология ферритов: Учебное пособие для вузов. Л.: Химия, 1983. 256 с.
- 2. Вест А. Химия твердого тела. Теория и приложения. М.: Мир, 1988. Ч. 1. 558 с.
- 3. Преображенский А.А., Бишард Е.Г. Магнитные материалы и элементы. М.: Высш. шк., 1986. 256 с.
- 4. Zangeneh H., Zinatizadeh A.A., Zinadini S. еt al. // Composites Part B. 2019. V. 176. P. 107158. https://doi.org/10.1016/j.compositesb.2019.107158
- 5. An P., Zuo F., Li X. et al. // Nano. 2013. V. 8. № 6. P.1350061-1. https://doi.org/10.1142/S1793292013500616
- 6. Iqbal A., Haq A. ul, Cerron-Calle G.A. et al. // Catalysts. 2021. V. 11. P. 806. https://doi.org/10.3390/catal11070806
- 7. Shokri A. // Environ. Chall. 2021. V. 5. P. 100332. https://doi.org/10.1016/j.envc.2021.100332
- 8. Arumugham N., Mariappan A., Eswaran J. et al. // J. Hazard. Mater. 2022. V. 8. P. 100156. https://doi.org/10.1016/j.hazadv.2022.100156
- 9. Peymanfar R., Ramezanalizadeh H. // Optik. 2018. V. 169. P. 424. https://doi.org/10.1016/j.ijleo.2018.05.072
- 10. Yang H., Zhang X., Weiqin A., Guangzhou Q. // Mater. Res. Bull. 2004. V. 39. № 6. P. 833.
- 11. Azizi A., Sadrnezhaad S.K. // Ceram. Int. 2010. V. 36. № 7. P. 2241. https://doi.org/10.1016/j.ceramint.2010.06.004.
- 12. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 37. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
- 13. Лисневская И.В., Боброва И.А., Петрова А.В., Лупейко Т.Г. // Журн. неорган. химии. 2012. Т. 57. С. 474.
- 14. Sivakumar P., Ramesh R., Ramanand A. et al. // Mater. Res. Bull. 2011. № 46. P. 2208. https://doi.org/10.1016/j.materresbull.2011.09.010
- 15. Mana R., Raguram T., Rajni K.S. // Mater. Today: Proc. 2019. № 18. P. 1753.
- 16. Кузнецов М.В., Морозов Ю.Г., Белоусова О.В. // Неорган. материалы. 2012. Т. 48. № 10. С. 1172.
- 17. Hernandeza P.T., Kuznetsov M.V., Morozov I.G., Parkind I.P. // Mater. Sci. Eng., B. 2019. № 244. P. 81. https://doi.org/10.1016/j.mseb.2019.05.003
- 18. Shafi K., Koltypin Y., Gedanken A. // J. Phys. Chem. B. 1997. V. 101. № 33. P. 6409.
- 19. Fang J., Shama N., Tung L.D. // J. Appl. Phys. 2003. V. 93. № 10. P. 7483.
- 20. Rodriguez-Rodriguez A.A., Moreno-Trejo M.B., Melendez-Zaragoza M.J. et al. // Int. J. Hydrogen Energy. 2018. V. 30. P. 12421. https://doi.org/10.1016/j.ijhydene.2018.09.183
- 21. Елисеев А.А., Лукашин А.В. Функциональные наноматериалы. М.: Физматлит, 2010. 456 c.
- 22. Udhayaa P.A., Bessy T.C., Meena M. // Mater. Today: Proceedings. 2019. V. 8. P. 169. https://doi.org/10.1016/j.matpr.2019.02.096
- 23. Mapossa A.B., Dantas J., Silva M.R. // Arabian J. Chem. 2019. V. 30. P. 1. https://doi.org/10.1016/j.arabjc.2019.09.003
- 24. Jifeng Q., Tinghua Ch., Shi L. et al. // Chin. Chem. Lett. 2019. V. 30. P. 1198. https://doi.org/10.1016/j.cclet.2019.01.021
- 25. Morelos-Santos O., Reyes de la Torre A.I., Schacht-Hernandez P. et al. // Catal. Today. 2019. V. 329. P. 1. https://doi.org/10.1016/j.cattod.2019.10.012
- 26. Zhang S., Jiang W., Li Y. et al. // Sens. Actuators, B. 2019. V. 291. P. 266. https://doi.org/10.1016/j.snb.2019.04.090
- 27. Chen D.H., He X.R. // Mater. Res. Bull. 2001. № 36. P. 1369. https://doi.org/10.1016/S0025-5408 (01)00620-1
- 28. Hassan A., Khan M.A., Shahid M. et al. // J. Magn. Magn. Mater. 2015. V. 393. P. 56. https://doi.org/10.1016/j.jmmm.2015.05.033
- 29. Velmurugan K., Venkatachalapathy V.S.K., Sendhilnathan S. // Mater. Res. 2010. V. 13. P. 299. https://doi.org/10.1590/S1516-14392010000300005
- 30. Gadkari А.В., Shinde T.J., Vasambekar P.N. // J. Mater. Sci. – Mater. Electron. 2010. V. 21. P. 96. https://doi.org/10.1007/s10854-009-9875-6
- 31. Maaz K., Karim S., Mumtaz A. et al. // J. Magn. Magn. Mater. 2009. № 321. P. 1838. https://doi.org/10.1016/j.jmmm.2008.11.098
- 32. Трофимова Т.В., Сайкова С.В., Пантелеева М.В. и др. // Стекло и керамика. 2018. № 2. С. 38.
- 33. Сайкова С.В., Трофимова Т.В., Павликов А.Ю., Самойло А.С. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 287.
- 34. Chen C.C., Liao H.J., Cheng C.Y. et al. // Biotechnol. Lett. 2007. V. 29. P. 391. https://doi.org/10.1007/s10529-006-9265-6
- 35. Chen K.C., Wu J-Y., Huang C-C. et al. // J. Biotechnol. 2003. V. 101. P. 241. https://doi.org/10.1016/S0168-1656 (02)00362-0
- 36. Cho B.P., Yang T., Blankenship L.R. et al. // Chem. Res. Toxicol. 2003. V. 16. P. 285. https://doi.org/10.1021/tx0256679
- 37. Saykova D., Saikova S., Mikhlin Yu. et al. // Metals. 2020. V. 10. № 1. P. 1075. https://doi.org/10.3390/met10081075
- 38. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. 280 с.
- 39. Сайкова С.В., Немкова Д.И., Пикурова Е.В., Самойло А.С. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1011.
- 40. CRC Handbook of Chemistry and Physics / Ed. Lide D.R. CRC Press, 2017. 2560 p.
- 41. Yusmar A., Armitasari L., Suharyadi E. // Mater. Today: proceedings. 2018. V. 5. P. 14955. https://doi.org/10.1016/j.matpr.2018.04.037
- 42. Sharifi I. // J. Magn. Magn. Mater. 2012. V. 324. № 15. P. 2397. https://doi.org/10.1016/j.jmmm.2012.03.008