- PII
- 10.31857/S0044457X24020061-1
- DOI
- 10.31857/S0044457X24020061
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 2
- Pages
- 193-202
- Abstract
- Zn(II) complexes of the composition [ZnLn2X2] and [ZnLn3(NO3)2] were synthesized, where n = 1, 2; X=Cl, Br, I; L1=2-aminothiadiazole-1,3,4, L2=2-amino-5-methylthiadiazole-1,3,4. The obtained complexes were studied by elemental analysis methods, IR and 1H NMR spectroscopy. The structure of the [ZnL22Br2] complex was determined by the RSA method (CIF file CCDC No. 2251742). The ligand molecules of 2-amino-5-R-thiadiazoles-1,3,4 (R = –H, –CH3) are coordinated monodentately by an endocyclic nitrogen atom located in the α-position to the amino group. The polyhedron of the central atom of halide complexes is a slightly distorted tetrahedron, in the coordination sphere of which two halide atoms and two endocyclic nitrogen atoms are located. During complexation in the spectrum of the solution of the [ZnL22Br2] complex, coordinated L2 ligands undergo amino-imine tautomerization into a heterocyclic amine with a nitrogen atom in a heterocycle. The polyhedron of the central atom for nitrate complexes is a slightly distorted trigonal bipyramide, in the coordination sphere of which three nitrogen atoms of ligands are located in the equatorial plane and two oxygen atoms of two nitrate anions in the axial position.
- Keywords
- 2-аминотиадиазол-1,3,4 2-амино-5-метилтиадиазол-1,3,4 комплексы цинка рентгеноструктурный анализ полиэдры
- Date of publication
- 15.02.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 50
References
- 1. Serban Georgeta, Stanasel Oana, Serban Eugenia, Bota Sanda // Drug Des Devel Ther. 2018. V. 12. № 5. P. 1545. https://doi.org/10.2147/DDDT.S155958
- 2. Karapetyan L.V., Tokmajyan G.G. // Russ. J. Gen. Chem. 2023. V. 93. № 3. P. 506. https://doi.org/10.1134/S1070363223030076
- 3. Nikiforova M.E., Lutsenko I.A., Kiskin M.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1343. https://doi.org/10.1134/S0036023621090102
- 4. Wang Y.F., Zhang S.Q., Feng Y.X., Wang L.Y. // Russ. J. Gen. Chem. 2021. V. 91. № 8. P. 1566. https://doi.org/10.1134/S1070363221080193
- 5. Никифорова С.Е., Кубасов А.С., Белоусова О.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 6. С. 832. https://doi.org/10.31857/S0044457Х2260219Х
- 6. Kalanithi M., Rajarajan M., Tharmaraj P., Johnson Raja S. // Med. Chem. Res. 2015. V. 24. № 4. P. 1578. https://doi.org/10.1007/s00044-014-1224-5
- 7. Kadirova Sh.A., Ishankhodzhaeva M.M., Parpiev N.A. et al. // Russ. J. Gen. Chem. 2008. V. 77. № 12. P. 2398. https://doi.org/10.1134/S1070363208120177
- 8. Umirov F.E., Shodikulov J.M., Aslonov A.B., Sharipov S.Sh.// Obog. rud. 2023/.V. 4. P. 25. https://www.doi.org/10.17580/or.2023.04.05
- 9. Chikineva T.Yu., Koshelev D.S., Medved`ko A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 170. https://doi.org/10.1134/S0036023621020054
- 10. Batyrenko A.A., Mikolaichuk O.V., Ovsepyan G.K. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 4. P. 666. https://doi.org/10.1134/S1070363221040149
- 11. Li R.Y., Li Y.J., Lu X.H. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 12. P. 26. https://doi.org/10.1134/S1070328420010042
- 12. Zahoor Ayesha, Imtiaz-ud-Din, Andleeb Sohaila et al. // J. Coord. Chem. 2021. V. 74. № 12. P. 1978. https://doi.org/10.1080/00958972.2021.1945046
- 13. Yong-Hui Zhou, Dong Jiang, You-Xuan Zheng // J. Organomet. Chem. 2018. V. 876. № 12. P. 26. https://doi.org/10.1016/j.jorganchem.2018.09.008
- 14. Umarov B.B., Ishankhodzhaeva M.M., Khusenov K.Sh. et al. // Russ. J. Org. Chem. 1999. V. 35. № 4. P. 599.
- 15. Uvarova M.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1660. https://doi.org/10.1134/S0036023621110218
- 16. Ligin Chen, Huihui Duan, Xinyu Zhang et al. // J. Heter. Chem. 2018. V. 55. № 8. P. 1978. https://doi.org/10.1002/jhet.3238
- 17. Abdelhakim Laachir, Salaheddine Guesmi, El Mostafa Ketatni et al. // J. Mol. Struct. 2020. V. 74. № 12. P. 1978. https://doi.org/10.1016/j.molstruc.2020.128533
- 18. Song Ye, Ji Yu-Fei, Kang MiN-Yan, Liu Zhi-Liang // Acta Crystallogr., Sect. E. 2012. V. 68. № 5. P. 772. https://doi.org/10.1107/S1600536812020995
- 19. Geng Ying, Zhang Wen, Song Jiang-Feng et al. // Inorg. Chim. Acta. 2021. V. 528. № 12. P. 120596. https://doi.org/10.1016/j.ica.2021.120596
- 20. Matveev E.Yu., Novikov I.V., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 187. https://doi.org/10.1134/S0036023621020121
- 21. Lavrenova L.G., Dyukova I.I., Korotaev E.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 1. P. 30. https://doi.org/10.1134/S0036023620010106
- 22. Yousif Emad, Majeed Ahmed, Al-Sammarrae Khulood et al. // Arab. J. Chem. 2017. V. 10. № 5. P. 1639. https://doi.org/10.1016/j.arabjc.2013.06.006
- 23. Kodirov S., Mukhiddinov B. et. al. // E3S Web of Conf. 2023. V. 417. P. 02010. https://doi.org/10.1051/e3sconf/202341702010
- 24. Sargsyan S.H., Sargsyan T.S., Agadjanyan I.G. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 2. P. 223. https://doi.org/10.1134/S1070363221020109
- 25. Gaponik P.N., Ivashkevich O.A., Krasitskii V.A. et al. // Russ. J. Gen. Chem. 2002. V. 72. № 9. P. 1457. https://doi.org/10.1023/A:1021646400922
- 26. Markosyan A.I., Ayvazyan A.S., Gabrielyan S.H. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 3. P. 485. https://doi.org/10.1134/S1070363223030040
- 27. Önkol T., Doğruer D.S., Uzun L. et al. // J. Enzyme Inhibition Med. Chem. 2008. V 23. № 2. Р. 277. https://doi.org/10.1080/14756360701408697
- 28. Yuhang He, Jingwen Chen, Xinran Yu et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1264. https://doi.org/10.1134/S0036023622080162
- 29. Popov L.D., Borodkin S.A., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 1. P. 9. https://doi.org/10.1134/S1070328421110038
- 30. Garnovskii A.D., Burlov A.S., Vasil’chenko I.S. et al. // Russ. J. Coord. Chem. 2010. V. 36. № 2. P. 81. https://doi.org/10.1134/S1070328410020016
- 31. Khusenov K.Sh., Umarov B.B., Ishankhodzhaeva M.M. et al. // Russ. J. Coord. Chem. 1997. V. 23. № 8. P. 555.
- 32. Ishankhodzhaeva M.M., Khusenov K.Sh., Umarov B.B. et al. // Russ. J. Inorg. Chem. 1998. V. 43. № 11. P. 1709.
- 33. Khusenov K.Sh., Umarov B.B., Ishankhodzhaeva M.M. et al. // Russ. J. Inorg. Chem. 1998. V. 43. № 12. P. 1841.
- 34. Rigaku Oxford Diffraction. CrysAlisPRO; Yarnton: England, 2018. Search in Google Scholar
- 35. Sheldrick G.M. SADABS. Program for Scaling and Correction of Area Detector Data (Univ. of Göttingen, Göttingen, Germany, 1997).
- 36. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/s2053229614024218
- 37. Накомото К. ИК-спектры и спектры КР неорганических и координационных соединений. Пер. с англ. M.: Мир, 1991. 536 с.
- 38. Kadirova Sh.A., Nuralieva G.A., Alieva M.A. et al. // Russ. J. Gen. Chem. 2005. V. 75. № 12. P. 1962. https://doi.org/10.1007/s11176-006-0022-2
- 39. Данилова Е.А., Меленчук Т.В., Трухина О.Н. и др. // Макрогетероциклы/Macroheterocycles. 2010. V. 1. № 3. С. 68. https://doi.org/10.6060/mhc2010.1.68
- 40. Umarov B.B., Avezov K.G., Tursunov M.A. et. al. // Russ. J. Coord. Chem. 2014. V. 40. № 7. P. 473. https://doi.org/10.1134/S1070328414070094
- 41. Киперт Д. Неорганическая стереохимия. М.: Мир, 1975. 280 с.
- 42. Хусенов К.Ш., Алиев Т.Б., Бахронова О.Ж. // Int. J. Adv. Technol. Natural Sci. 2022. V. 3. № 4. С. 25. https://doi.org/10.24412/2181-144X-2022-4-25-35
- 43. Beatriz C., Verónica G., Ana E. Platero-Prats et al. // Dalton Trans. Royal Soc. Chem. 2008. P. 2832. https://doi.org/ 10.1039/b801115j
- 44. Lynch D.E. // Acta Crystallogr., Sect. C. 2001. V. 57. Р. 1201. https://doi.org/10.1107/S0108270105040126
- 45. Kadirova Sh.A., Ishankhodzhaeva M.M., Parpiev N.A. et al. // Russ. J. Gen. Chem. 2007. V. 77. № 10. P. 1799. https://doi.org/10.1134/S1070363207100210