RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Effect of the photonic band gap position on the photocatalytic activity of anodic titanium oxide photonic crystal

PII
10.31857/S0044457X24010155-1
DOI
10.31857/S0044457X24010155
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 1
Pages
131-140
Abstract
The slowing down of the group velocity of light at the edges of the photonic band gap is one of the important optical effects observed in photonic crystals. In particular, the “slow light” effect is used in photocatalysis to increase the photocatalytic activity of semiconductors. In this work, anatase photonic crystals with different spectral positions of the photonic band gap (390–1283 nm, measured in water) were obtained. It is shown that if one of the photonic band gaps is located near the absorption edge of the semiconductor (410 nm), photonic crystal exhibits high photocatalytic activity in the photodegradation of methylene blue. At the same time, the photocatalytic activity of anatase photonic crystal increases by 30% when the photonic band gap of the third order rather than the first order is located near the absorption edge of the semiconductor.
Keywords
анодный оксид титана фотонный кристалл фотонная запрещенная зона фотокатализатор анатаз
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
37

References

  1. 1. Goodeve C.F., Kitchener J.A. // Trans. Faraday Soc. 1938. V. 34. P. 902. https://doi.org/10.1039/TF9383400902
  2. 2. Филимонов В.Н. // Докл. АН СССР. 1964. Т. 154. № 4. С. 922.
  3. 3. Lim S.Y., Law C.S., Liu L. et al. // Catalysts. 2019. V. 9. № 12. P. 988. https://doi.org/10.3390/catal9120988
  4. 4. Chen X., Shen S., Guo L. et al. // Chem. Rev. 2010. V. 110. № 11. P. 6503. https://doi.org/10.1021/cr1001645
  5. 5. Chen D., Cheng Y., Zhou N. et al. // J. Clean. Prod. 2020. V. 268. P. 121725. https://doi.org/10.1016/j.jclepro.2020.121725
  6. 6. Nguyen T.P., Nguyen D.L.T., Nguyen V.-H. et al. // Nanomaterials. 2020. V. 10. № 2. P. 337. https://doi.org/10.3390/nano10020337
  7. 7. Kaushal S., Kaur H., Kumar S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 616. https://doi.org/10.1134/S0036023620040087
  8. 8. Садовников А.А., Нечаев Е.Г., Бельтюков А.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 432. [Sadovnikov A.A., Nechaev E.G., Beltiukov A.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 460. https://doi.org/10.1134/S0036023621040197]
  9. 9. Беликов М.Л., Седнева Т.А., Локшин Э.П. // Неорган. материалы. 2021. Т. 57. № 2. С. 154. [Belikov M.L., Sedneva T.A., Lokshin E.P. // Inorg Mater 2021. V. 57. № 2. P. 146. https://doi.org/10.1134/S0020168521020023]
  10. 10. Дорошева И.Б., Валеева А.А., Ремпель А.А. и др. // Неорган. материалы. 2021. Т.. 57. № 5. С. 528. [Dorosheva I.B., Valeeva A.A., Rempel A.A. et al. // Inorg Mater. 2021. V. 57. № 5. P. 503. https://doi.org/10.1134/S0020168521050022]
  11. 11. Sakfali J., Ben Chaabene S., Akkari R. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1324. https://doi.org/10.1134/S003602362208023X
  12. 12. Xiao-fang Li, Feng X., Li R. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 2. P. S98. https://doi.org/10.1134/S0036023622602124
  13. 13. Беликов М.Л., Сафарян С.А. // Неорган. материалы. 2022. Т. 58. С. 742. [Belikov M.L., Safaryan S.A. // Inorg Mater. 2022. V. 58. № 7. P. 715. https://doi.org/10.1134/S0020168522070032]
  14. 14. Tang H., Berger H., Schmid P.E. et al. // Solid State Commun. 1993. V. 87. № 9. P. 847. https://doi.org/10.1016/0038-1098 (93)90427-O
  15. 15. Amtout A., Leonelli R. // Phys. Rev. B. 1995. V. 51. № 11. P. 6842. https://doi.org/10.1103/PhysRevB.51.6842
  16. 16. Perović K., dela Rosa F.M., Kovačić M. et al. // Materials. 2020. V. 13. № 6. P. 1338. https://doi.org/10.3390/ma13061338
  17. 17. Zhao D., Sheng G., Chen C. et al. // Appl. Catal., B: Environ. 2012. V. 111–112. P. 303. https://doi.org/10.1016/j.apcatb.2011.10.012
  18. 18. Yu Y., Yu J.C., Yu J.-G. et al. // Appl. Catal. Gen. 2005. V. 289. № 2. P. 186. https://doi.org/10.1016/j.apcata.2005.04.057
  19. 19. Lee I., Joo J.B., Yin Y. et al. // Angew. Chem. Int. Ed. 2011. V. 50. № 43. P. 10208. https://doi.org/10.1002/anie.201007660
  20. 20. Kolesnik I.V., Chebotaeva G.S., Yashina L.V. et al. // Mendeleev Commun. 2013. V. 1. № 23. P. 11. https://doi.org/10.1016/j.mencom.2013.01.003
  21. 21. Chen J.I.L., von Freymann G., Choi S.Y. et al. // Adv. Mater. 2006. V. 18. № 14. P. 1915. https://doi.org/ 10.1002/adma.200600588
  22. 22. Chen S.-L., Wang A.-J., Dai C. et al. // Chem. Eng. J. 2014. V. 249. P. 48. https://doi.org/10.1016/j.cej. 2014.03.075
  23. 23. Wang Y., Xiong D.-B., Zhang W. et al. // Catal. Today. 2016. V. 274. P. 15. https://doi.org/10.1016/j.cattod. 2016.01.052
  24. 24. Zheng L., Dong Y., Bian H. et al. // Electrochim. Acta. 2016. V. 203. P. 257. https://doi.org/10.1016/j.electacta.2016.04.049
  25. 25. Li Y., Liu F.-T., Chang Y. et al. // Appl. Surf. Sci. 2017. V. 426. P. 770. https://doi.org/10.1016/j.apsusc. 2017.07.258
  26. 26. Zhou W.-M., Wang J., Wang X.-G. et al. // Phys. E: Low-Dimens. Syst. Nanostructures. 2019. V. 114. P. 113571. https://doi.org/10.1016/j.physe.2019.113571
  27. 27. Li J.-F., Wang J., Wang X.-T. et al. // Cryst. Eng. Comm. 2020. V. 22. № 11. P. 1929. https://doi.org/10.1039/C9CE01828J
  28. 28. Lin J., Liu K., Chen X. // Small. 2011. V. 7. № 13. P. 1784. https://doi.org/10.1002/smll.201002098
  29. 29. Xie Y.-L., Li Z.-X., Xu H. et al. // Electrochem. Commun. 2012. V. 17. P. 34. https://doi.org/10.1016/j.elecom.2012.01.021
  30. 30. Sapoletova N.A., Kushnir S.E., Napolskii K.S. // Electrochem. Commun. 2018. V. 91. P. 5. https://doi.org/10.1016/j.elecom.2018.04.018
  31. 31. Sadykov A.I., Kushnir S.E., Sapoletova N.A. et al. // Scripta Mater. 2020. V. 178. P. 13. https://doi.org/ 10.1016/j.scriptamat.2019.10.044
  32. 32. Curti M., Schneider J., Bahnemann D.W. et al. // J. Phys. Chem. Lett. 2015. V. 6. № 19. P. 3903. https://doi.org/ 10.1021/acs.jpclett.5b01353
  33. 33. Zhou X., Liu N., Schmuki P. // ACS Catal. 2017. V. 7. № 5. P. 3210. https://doi.org/10.1021/acscatal.6b03709
  34. 34. Chen J.I.L., Freymann G. von, Choi S.Y. et al. // J. Mater. Chem. 2008. V. 18. № 4. P. 369. https://doi.org/10.1039/B708474A
  35. 35. Joannopoulos J.D., Johnson S.G., Winn J.N. et al. // Photonic crystals: molding the flow of light. Woodstock: Princeton University Press, 2008.
  36. 36. Waterhouse G.I.N., Wahab A.K., Al-Oufi M. et al. // Sci. Rep. 2013. V. 3. № 1. P. 2849. https://doi.org/10.1038/srep02849
  37. 37. Wu M., Jin J., Liu J. et al. // J. Mater. Chem. A. 2013. V. 1. № 48. P. 15491. https://doi.org/10.1039/C3TA13574H
  38. 38. Sapoletova N.A., Kushnir S.E., Napolskii K.S. // Nanotechnology. 2022. V. 33. № 6. P. 065602. https://doi.org/ 10.1088/1361-6528/ac345c
  39. 39. Mote V., Purushotham Y., Dole B. // J. Theor. Appl. Phys. 2012. V. 6. № 1. P. 6. https://doi.org/10.1186/2251-7235-6-6
  40. 40. Zhang J., Li S., Ding H. et al. // J. Power Sources. 2014. V. 247. P. 807. https://doi.org/10.1016/j.jpowsour. 2013.08.124
  41. 41. Саполетова Н.А., Кушнир С.Е., Черепанова Ю.М. и др. // Неорган. материалы 2022. Т. 58. № 1. С. 44. [Sapoletova N.A., Kushnir S.E., Cherepanova Yu.M. et al. // Inorg. Mater. 2022. V. 58. № 1. P. 40. https://doi.org/10.1134/S0020168522010101]
  42. 42. Булдаков Д.А., Петухов Д.И., Колесник И.В. и др. // Росс. нанотехн. 2009. Т. 4. № 5–6. С. 58. [Buldakov D.A., Petukhov D.I., Kolesnik I.V. et al. // Nanotechnol Russia. 2009. V. 4. № 5. P. 296. https://doi.org/10.1134/S1995078009050061]
  43. 43. Su Z., Zhou W. // J. Mater. Chem. 2009. V. 19. № 16. P. 2301. https://doi.org/10.1039/B820504C
  44. 44. Roslyakov I.V., Kolesnik I.V., Levin E.E. et al. // Surf. Coat. Technol. 2020. V. 381. P. 125159. https://doi.org/ 10.1016/j.surfcoat.2019.125159
  45. 45. Уханов Ю.И. // Оптические свойства полупроводников. М.: Наука, 1977.
  46. 46. Joshi G.P., Saxena N.S., Mangal R. et al. // Bull. Mater. Sci. 2003. V. 26. № 4. P. 387. https://doi.org/10.1007/BF02711181
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library