RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Thermodynamic simulation of the CVD process in the system Ni–Si–C–H

PII
10.31857/S0044457X24010059-1
DOI
10.31857/S0044457X24010059
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 1
Pages
43-48
Abstract
Owing to its unique properties, oxygen-free ceramics are promising for use in various branches of technology. The inclusion of metals or their compounds in this ceramic significantly expands the possibilities of its application. Therefore, methods for the synthesis of such composites are being actively developed. One of the ways to obtain such films is the deposition from the gas phase. Thermodynamic modeling allows you to choose the conditions for this process. In this work, thermodynamic modeling of the CVD process in the Ni-Si-C-H system, where nickelocene and silane were precursors, was carried out. The results of the work can be useful for developing methods for obtaining film materials based on SiC and nickel-containing phases.
Keywords
термодинамическое моделирование система Ni–Si–C–H химическое осаждение из газовой фазы
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
47

References

  1. 1. Шестаков А.М. // Тр. ВИАМ, 2021. Ч. 1. № 8 (102). C. 21. https://doi.org/10.18577/2307-6046-2021-0-8-21-33
  2. 2. Hye-Rim Jeong, Tae-Hwan Huh, Byung Hyo Kim, Young-Je Kwark // Ceram. Int. 2022. V. 48. № 12. P. 16576. https://doi.org/10.1016/j.ceramint.2022.02.202
  3. 3. Idesaki A., Colombo P. // Adv. Eng. Mater. 2012. V. 14. P. 1116. https://doi.org/10.1002/adem.201100354.
  4. 4. Friebe L., Liu K., Obermeier B., Petrov S. et al. // Chem. Mater. 2007. V. 19. P. 2630. https://doi.org/10.1021/cm062470j
  5. 5. Bazarjani M.S., Kleebe H.-J., Müller M.M. et al. // Chem. Mater. 2011. V. 23. Р. 4112. https://doi.org/10.1021/cm200589n
  6. 6. Liu Y., Feng Y., Gong H. et al. // J. Alloys Compd. 2018. V. 749. P. 620. https://doi.org/10.1016/j.jallcom.2018.03.346
  7. 7. Станкевич Е.В., Тявловская Е.А. // Журн. прикл. спектроскопии. 2010. Т. 77. № 5. С. 737.
  8. 8. Fanping Meng, Bo Wang, Fangfang Ge, Feng Huang // Surf. Coat. Technol. 2012. V. 213. P. 77. https://doi.org/10.1016/j.surfcoat.2012.10.020
  9. 9. Asakuma N., Tada S., Kawaguchi E. et al. // Nanomater. 2022. V. 12. P. 1644. https://doi.org/10.3390/nano12101644
  10. 10. Yu Liu, Xiao Lin, Hongyu Gong et al. // J. Alloys Compd. 2019. V. 771. P. 356. https://doi.org/10.1016/j.jallcom.2018.08.283
  11. 11. Yu Liu, Xiao Lin, Hongyu Gong et al. // J. Alloys Compd. 2018. V. 749. P. 620. https://doi.org/10.1016/j.jallcom.2018.03.346
  12. 12. Hahn G., Ewert J.-K., Denner C. et al. // Chem. Cat. Chem. 2016. V. 8. P. 2461. http://dx.doi.org/10.1002/cctc.201600391
  13. 13. Xiaofei Zhang, Lixin Chen, Lala Meng. et al. // Ceram. Int. 2014. V. 40. P. 6937. https://doi.org/10.1016/j.ceramint.2013.12.017
  14. 14. Friebe L., Liu K., Obermeier B. et al. // Chem. Mater. 2007. V. 19. P. 2630. https://doi.org/10.1021/cm062470j
  15. 15. Sheikh Aamir Farooq, Ankush Raina, Sanjay Mohan. et al. // Nanomater. 2022. V. 12. P. 1323. https://doi.org/10.3390/nano12081323
  16. 16. Sheikh Aamir Farooq, Ankush Raina, Sanjay Mohan et al. // Nanomater. 2022. V. 12. P. 1323. https://doi.org/10.3390/nano12081323
  17. 17. Hwang Seong-Don, Remmes N.B., Dowben P.A., McIlroy D.N. // J. Vac. Sci. Technol. 1996. V. B14. P. 2957. https://doi.org/10.1116/1.588942
  18. 18. Fanping Meng, Bo Wang, Fangfang Ge, Feng Huang // Surf. Coat. Technol. 2012. V. 213. P. 77. https://doi.org/10.1016/j.surfcoat.2012.10.020
  19. 19. Шестаков В.А., Косяков В.И., Косинова М.Л. // Журн. неорган. химии. 2020. Т. 65. C. 829. [Shestakov V.A., Kosyakov V.I., Kosinova M.L. // Russ. J. Inorg. Chem. 2020. V. 65. P. 898. https://doi.org/10.7868/S0044457X1806017X]
  20. 20. Шестаков В.А., Косинова М.Л. // Изв. АН. Сер. хим. 2021. № 2. С. 283. [Shestakov V.A., Kosinova M.L. // Russ. Chem. Bull., Int. Ed. 2021. V. 70. № 2. P. 283. https://doi.org/10.1007/s11172-021-3083-9]
  21. 21. Шестаков В.А., Косинова М.Л. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1585. [Shestakov V.A., Kosinova M.L. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1703. https://doi.org/10.31857/S0044457X21110155]
  22. 22. Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорг. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608 [Shestakov V.A., Yakovkina L.V., Kichay V.N. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1956. https://doi.org/10.1134/S0036023622601179]
  23. 23. Кузнецов Ф.А., Буждан Я.М., Коковин Г.А. // Изв. СО АН СССР. Сер. хим. наук. 1975. № 2. Вып. 1. С. 24.
  24. 24. Kuznetsov F.A., Titov V.A. Proc. Int. Symp. on Advanced Materials. September 24–30. Jpn., 1995. P. 16.
  25. 25. Термодинамические свойства индивидуальных веществ / Под ред. Глушко В.П. и др. М.: Наука, 1988. Т. 3. Кн. 2. 395 с.
  26. 26. Barin I. Termodynamical data of pure substances. N.Y., 1989. 1739 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library