- PII
- 10.31857/S0044457X23601487-1
- DOI
- 10.31857/S0044457X23601487
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 12
- Pages
- 1731-1739
- Abstract
- New iminium derivatives of the sulfonio-closo-decaborate anion have been obtained in the form of tetrabutylammonium salts (Bu4N)[2-B10H9SC(NH2)R] (R = –CH3, –CH2CH3, –CH(CH3)2, –Ph, –PhCH3), in which the iminium group acts as a protective group and allows further modification of the boron cluster anion without acting the sulfonium group. The compounds have been studied by elemental analysis, IR and 11B, 1H, 13C NMR spectroscopies. The structure of compounds (Bu4N)[2-B10H9SC(NH2)CH3] and (Bu4N)[2-B10H9SC(NH2)Ph] has been confirmed by X-ray diffraction analysis. The yield of final compounds is >80%.
- Keywords
- кластеры бора <i>клозо</i>-декаборатный анион сульфониевые производные иминиевые соли
- Date of publication
- 01.12.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 38
References
- 1. Dash B.P., Satapathy R., Maguire J.A. et al. // New J. Chem. 2011. V. 35. № 10. P. 1955. https://doi.org/10.1039/c1nj20228f
- 2. Axtell J.C., Saleh L.M.A., Qian E.A. et al. // Inorg. Chem. 2018. V. 57. № 5. P. 2333. https://doi.org/10.1021/acs.inorgchem.7b02912
- 3. Stogniy M.Y., Bogdanova E.V., Anufriev S.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1537. https://doi.org/10.1134/S0036023622600848
- 4. Dash B.P., Satapathy R., Gaillard E.R. et al. // J. Am. Chem. Soc. 2010. V. 132. № 18. P. 6578. https://doi.org/10.1021/ja101845m
- 5. Bae Y.S., Spokoyny A.M., Farha O.K. et al. // Chem. Commun. 2010. V. 46. № 20. P. 3478. https://doi.org/10.1039/b927499e
- 6. Gao S., Zhu Y., Hosmane N. // Boron-Based Compd. Potential Emerg. Appl. Med. 2018. P. 371. https://doi.org/10.1002/9781119275602.ch3.4
- 7. Jankowiak A., Kanazawa J., Kaszynski P. et al. // J. Organomet. Chem. 2013. V. 747. P. 195. https://doi.org/10.1016/j.jorganchem.2013.05.034
- 8. Goossens K., Lava K., Bielawski C.W. et al. // Chem. Rev. 2016. V. 116. № 8. P. 4643. https://doi.org/10.1021/cr400334b
- 9. Ali F., S Hosmane N., Zhu Y. // Molecules. 2020. V. 25. № 4. P. 828. https://doi.org/10.3390/molecules25040828
- 10. Matveev E.Y., Garaev T.M., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 670. https://doi.org/10.1134/S0036023623600533
- 11. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
- 12. Nelyubin A.V., Klyukin I.N., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 658. https://doi.org/10.1134/S003602362360048X
- 13. Voinova V.V., Klyukin I.N., Novikov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 3. P. 295. https://doi.org/10.1134/S0036023621030190
- 14. Matveev E.Y., Retivov V.M., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1549. https://doi.org/10.1134/S0036023611100160
- 15. Kubasov A.S., Turishev E.S., Golubev A.V. et al. // Inorg. Chim. Acta. 2020. V. 507. № March. P. 119589. https://doi.org/10.1016/j.ica.2020.119589
- 16. Mindich A.L., Bokach N.A., Kuznetsov M.L. et al. // Chempluschem. 2012. V. 77. № 12. P. 1075. https://doi.org/10.1002/cplu.201200257
- 17. Neumolotov N.K., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1583. https://doi.org/10.1134/S0036023622600861
- 18. Ivanov S.V., Miller S.M., Anderson O.P. et al. // J. Am. Chem. Soc. 2003. V. 125. № 16. P. 4694. https://doi.org/10.1021/ja0296374
- 19. Bolli C., Derendorf J., Jenne C. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4552. https://doi.org/10.1002/ejic.201700620
- 20. Warneke J., Konieczka S.Z., Hou G.L. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 11. P. 5903. https://doi.org/10.1039/c8cp05313h
- 21. Jankowiak A., Baliński A., Harvey J.E. et al. // J. Mater. Chem. C. 2013. V. 1. № 6. P. 1144. https://doi.org/10.1039/c2tc00547f
- 22. Kaszyński P., Ringstrand B. // Angew. Chem. Int. Ed. 2015. V. 54. № 22. P. 6576. https://doi.org/10.1002/anie.201411858
- 23. Voinova V.V., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 678. https://doi.org/10.1134/S003602362360017X
- 24. Schelhaas M., Waldmann H. // Angew. Chem. Int. Ed. 1996. V. 35. № 18. P. 2056. https://doi.org/10.1002/anie.199620561
- 25. Bols M., Pedersen C.M. // Beilstein J. Org. Chem. 2017. V. 13. P. 93. https://doi.org/10.3762/bjoc.13.12
- 26. Davies J.S., Higginbotham C.L., Tremeer E.J. et al. // J. Chem. Soc., Perkin Trans. 1992. № 22. P. 3043. https://doi.org/10.1039/p19920003043
- 27. Dangerfield E.M., Plunkett C.H., Win-Mason A.L. et al. // J. Org. Chem. 2010. V. 75. № 16. P. 5470. https://doi.org/10.1021/jo100004c
- 28. Reddy P.Y., Kondo S., Toru T. // J. Org. Chem. 1997. V. 62. № 8. P. 2652. https://doi.org/https://doi.org/10.1021/jo962202c
- 29. Zeysing B., Gosch C., Terfort A. // Org. Lett. 2000. V. 2. № 13. P. 1843. https://doi.org/10.1021/ol0058902
- 30. Greene T.W., Wuts P.G.M. // Protection for the Thiol Group, in: Prot. Groups Org. Synth., John Wiley, 1999: pp. 454–493. https://doi.org/10.1002/0471220574
- 31. Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
- 32. Bruker, SAINT, Bruker AXS Inc.: Madison (WI), USA 2018 // n.d.
- 33. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 34. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
- 35. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- 36. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
- 37. Kubasov A.S., Golubev A.V., Bykov A.Y. et al. // J. Mol. Struct. 2021. V. 1241. P. 130591. https://doi.org/10.1016/j.molstruc.2021.130591
- 38. Ali M.O., Lasseter J.C., Żurawiński R. et al. // Chem. – A Eur. J. 2019. V. 25. № 10. P. 2616. https://doi.org/10.1002/chem.201805392
- 39. Kultyshev R.G., Liu J., Meyers E.A. et al. // Inorg. Chem. 2000. V. 39. № 15. P. 3333. https://doi.org/10.1021/ic000198o
- 40. Axhausen J., Ritter C., Lux K. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. № 1. P. 65. https://doi.org/10.1002/zaac.201200419
- 41. Chang H.C., Hsu Y.C., Chen C.H. et al. // Dalton Trans. 2015. V. 44. № 48. P. 20808. https://doi.org/10.1039/c5dt03316k