- PII
- 10.31857/S0044457X23601207-1
- DOI
- 10.31857/S0044457X23601207
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 11
- Pages
- 1515-1522
- Abstract
- The sorption properties of amorphous cerium(IV) hydrogen phosphate and crystalline phases NH4Ce2(PO4)3, (NH4)2Ce(PO4)2·H2O, and Ce(OH)PO4 towards the 243Am(III), 232Th(IV), 237Np(V), and 233, 238U(VI) radionuclides were studied in aqueous media at pH 1, 4, 7, and 10 for 24 h. The highest degree of sorption (up to 100%) was found for amorphous cerium(IV) hydrogen phosphate. The pH dependences of radionuclide sorption for crystalline compounds were shown to be similar to one another: the highest sorption was observed at pH 7 (up to 100% for 243Am(III)), while the lowest values were observed for pH 10 and 1. An exception was provided by 237Np(V), the sorption of which was close to zero in the pH range of 1–7 and reached 60% at pH 10. Keeping amorphous and crystalline cerium(IV) phosphates in acid medium leads to quantitative desorption of all of the tested radionuclides within the first 5 h.
- Keywords
- жидкие радиоактивные отходы сорбенты адсорбция фосфаты РЗЭ
- Date of publication
- 01.11.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 41
References
- 1. Chakraborty A., Pal A., Saha B.B. // Materials (Basel). 2022. V. 15. № 24. P. 8818. https://doi.org/10.3390/ma15248818
- 2. Yu S., Wang X., Tan X. et al. // Inorg. Chem. Front. 2015. V. 2. № 7. P. 593. https://doi.org/10.1039/C4QI00221K
- 3. Корнейков Р.И., Иваненко В.И., Аксенова С.В. // Неорган. материалы. 2022. Т. 58. № 2. С. 150. https://doi.org/10.31857/S0002337X22020075
- 4. Ярусова С.Б., Гордиенко П.С., Шичалин О.О. и др. // Журн. неорган. химии. 2022. V. 67. № 9. P. 1251. https://doi.org/10.31857/S0044457X22090197
- 5. Hyatt O. // Materials (Basel). 2019. V. 12. № 21. P. 3611. https://doi.org/10.3390/ma12213611
- 6. Neumeier S., Arinicheva Y., Ji Y. et al. // Radiochim. Acta. 2017. V. 105. № 11. P. 961. https://doi.org/10.1515/ract-2017-2819
- 7. Locock A.J. // Crystal Chemistry of Actinide Phosphates and ArsenatesStruct. Chem. Inorg. Actin. Compd / Eds. Krivovichev S.V., Burns P.C., Tananaev I.G. Amsterdam: Elsevier, 2007. P. 217.
- 8. Orlova A.I., Ojovan M.I. // Materials (Basel). 2019. V. 12. № 16. P. 2638. https://doi.org/10.3390/ma12162638
- 9. Drot R., Lindecker C., Fourest B. et al. // New J. Chem. 1998. V. 22. № 10. P. 1105. https://doi.org/10.1039/a803215g
- 10. Wang J., Wei Y., Wang J. et al. // Ceram. Int. 2022. V. 48. № 9. P. 12772. https://doi.org/10.1016/j.ceramint.2022.01.147
- 11. Bregiroux D., Popa K., Wallez G. // J. Solid State Chem. 2015. V. 230. P. 26. https://doi.org/10.1016/j.jssc.2015.06.010
- 12. Dacheux N., Clavier N., Robisson A.C. et al. // Comptes Rendus Chim. 2004. V. 7. № 12. P. 1141. https://doi.org/10.1016/j.crci.2004.02.019
- 13. Hayashi H., Ebina T., Onodera Y. et al. // Bull. Chem. Soc. Jpn. 1997. V. 70. № 7. P. 1701. https://doi.org/10.1246/bcsj.70.1701
- 14. Романчук А.Ю., Шекунова Т.О., Петров В.Г. и др. // Радиохимия. 2018. Т. 60. № 6. С. 525. https://doi.org/10.1134/s0134347518060086
- 15. Metwally S.S., El-Gammal B., Aly H.F. et al. // Sep. Sci. Technol. 2011. V. 46. № 11. P. 1808. https://doi.org/10.1080/01496395.2011.572328
- 16. El-Gammal B., Metwally S.S., Aly H.F. et al. // Desalin. Water Treat. 2012. V. 46. № 1–3. P. 124. https://doi.org/10.1080/19443994.2012.677412
- 17. Bevara S., Achary S.N., Patwe S.J. et al. // AIP Conf. Proc. 2016. V. 1731. P. 1. https://doi.org/10.1063/1.4948206
- 18. Романчук А.Ю., Шекунова Т.О., Ларина А.И. и др. // Радиохимия. 2019. Т. 61. № 6. С. 512. https://doi.org/10.1134/s00338311190600121
- 19. Salvadó M.A., Pertierra P., Bortun A.I. et al. // Inorg. Chem. 2008. V. 47. № 16. P. 7207. https://doi.org/10.1021/ic800818c
- 20. Brandel V., Dacheux N. // J. Solid State Chem. 2004. V. 177. № 12. P. 4755. https://doi.org/10.1016/j.jssc.2004.08.008
- 21. Dacheux N., Clavier N., Wallez G. et al. // Solid State Sci. 2007. V. 9. № 7. P. 619. https://doi.org/10.1016/j.solidstatesciences.2007.04.015
- 22. Yorov K.E., Shekunova T., Baranchikov et al. // J. Sol-Gel Sci. Technol. 2018. V. 85. № 3. P. 574. https://doi.org/10.1007/s10971-018-4584-3
- 23. Shekunova T.O., Baranchikov A.E., Ivanova O.S. et al. // J. Non. Cryst. Solids. 2016. V. 447. P. 183. https://doi.org/10.1016/j.jnoncrysol.2016.06.012
- 24. Иванов В.К., Полежаева О.С., Баранчиков А.Е. и др. // Неорган. материалы. 2010. Т. 46. № 1. С. 49. https://doi.org/10.1134/S0020168510010103
- 25. Shekunova T.O., Istomin S.Y., Mironov A. V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
- 26. Kozlova T.O., Mironov A.V., Istomin S.Y. et al. // Chem. A Eur. J. 2020. V. 26. № 53. P. 12188. https://doi.org/10.1002/chem.202002527
- 27. Саввин С.Б. Арсеназо III. Методы фотометрического определения редких и актинидных элементов. М.: Атомиздат, 1966. 256 с.
- 28. Shakshooki S.K., El-Akari F.A., El-Fituri S.M. et al. // Adv. Mater. Res. 2014. V. 856. P. 3. https://doi.org/10.4028/www.scientific.net/AMR.856.3
- 29. Somya A., Rafiquee M.Z.A., Varshney K.G. // Colloids Surf., A: Physicochem. Eng. Asp. 2009. V. 336. № 1–3. P. 142. https://doi.org/10.1016/j.colsurfa.2008.11.036
- 30. El-Azony K.M., Ismail Aydia M., El-Mohty A.A. // J. Radioanal. Nucl. Chem. 2011. V. 289. № 2. P. 381. https://doi.org/10.1007/s10967-011-1079-x
- 31. Hayashi H., Torii K., Nakata S.I. // J. Mater. Chem. 1997. V. 7. № 3. P. 557. https://doi.org/10.1039/a606397g
- 32. Ishii K., Kimura Y., Yamazaki T. et al. // RSC Adv. 2017. V. 7. № 57. P. 35711. https://doi.org/10.1039/c7ra06850f
- 33. Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
- 34. Тронев И.В., Шейченко Е.Д., Разворотнева Л.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 318. https://doi.org/10.31857/S0044457X22601869
- 35. Thakur P., Moore R.C., Choppin G.R. // Radiochim. Acta. 2006. V. 94. № 9–11. P. 645. https://doi.org/10.1524/ract.2006.94.9-11.645
- 36. Gao Y., Dau P.V., Parker B.F. et al. // Inorg. Chem. 2018. V. 57. № 12. P. 6965. https://doi.org/10.1021/acs.inorgchem.8b00654
- 37. Козлова T.O., Василева Д.Н., Козлов Д.A. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1687. https://doi.org/10.31857/S0044457X22600955
- 38. Gausse C., Szenknect S., Qin D.W. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. № 28. P. 4615. https://doi.org/10.1002/ejic.201600517
- 39. Fourest B., Lagarde G., Perrone J. et al. // New J. Chem. 1999. V. 23. № 6. P. 645. https://doi.org/10.1039/a900818g
- 40. Choppin G.R. // Mar. Chem. 2006. V. 99. № 1–4. P. 83. https://doi.org/10.1016/j.marchem.2005.03.011
- 41. Tang M., Chen J., Wang P. et al. // Environ. Sci. Nano. 2018. V. 5. № 10. P. 2304. https://doi.org/10.1039/C8EN00761F
- 42. Zhijun G., Lijun N., Zuyi T. // J. Radioanal. Nucl. Chem. 2005. V. 266. № 2. P. 333. https://doi.org/10.1007/s10967-005-0912-5
- 43. Fröhlich D.R., Kaplan U. // J. Radioanal. Nucl. Chem. 2018. V. 318. № 3. P. 1785. https://doi.org/10.1007/s10967-018-6310-6
- 44. Weijuan L., Zuyi T. // J. Radioanal. Nucl. Chem. 2002. V. 254. № 1. P. 187. https://doi.org/10.1023/A:1020874405480
- 45. Křepelová A., Sachs S., Bernhard G. // Radiochim. Acta. 2011. V. 99. № 5. P. 253. https://doi.org/10.1524/ract.2011.1829
- 46. Chisholm-Brause C.J., Berg J.M., Matzner R.A. et al. // J. Colloid Interface Sci. 2001. V. 233. № 1. P. 38. https://doi.org/10.1006/jcis.2000.7227
- 47. Thakur P., Moore R.C., Choppin G.R. // Radiochim. Acta. 2005. V. 93. № 7. P. 385. https://doi.org/10.1524/ract.2005.93.7.385
- 48. Drot R., Simoni E. // 1999. № 15. № 14. P. 4820. https://doi.org/10.1021/la981596v
- 49. Girvin D.C., Ames L.L., Schwab A.P. et al. // J. Colloid Interface Sci. 1991. V. 141. № 1. P. 67. https://doi.org/10.1016/0021-9797 (91)90303-P
- 50. Pourret O., Bollinger J.-C., Hursthouse A. et al. // Sci. Total Environ. 2022. V. 838. P. 156545. https://doi.org/10.1016/j.scitotenv.2022.156545
- 51. Strawn D.G. // Soil Syst. 2021. V. 5. № 1. P. 13. https://doi.org/10.3390/soilsystems5010013
- 52. Romanchuk A.Y., Gracheva N.N., Bryukhanova K.I. et al. // Mendeleev Commun. 2018. V. 28. № 3. P. 303. https://doi.org/10.1016/j.mencom.2018.05.025
- 53. Katz J., Seaborg G., Morss L. // Springer Dordrecht. 1986. V. 2. 912 p. https://doi.org/10.1007/978-94-009-3155-8
- 54. Dacheux N., Clavier N., Podor R. // Am. Mineral. 2013. V. 98. № 5–6. P. 833. https://doi.org/10.2138/am.2013.4307
- 55. Schlenz H., Heuser J., Neumann A. et al. // Z. Krist. 2013. V. 228. № 3. P. 113. https://doi.org/10.1524/zkri.2013.1597
- 56. Clavier N., Podor R., Dacheux N. // J. Eur. Ceram. Soc. 2011. V. 31. № 6. P. 941. https://doi.org/10.1016/j.jeurceramsoc.2010.12.019