RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Thermophysical Properties of Neodymium and Gadolinium Zirconate Hafnates

PII
10.31857/S0044457X23600974-1
DOI
10.31857/S0044457X23600974
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 10
Pages
1462-1472
Abstract
Pyrochlore-type neodymium and gadolinium zirconate hafnates have been prepared and identified. The heat capacities of the prepared samples have been measured by differential scanning calorimetry in the range 310–1800 K. Temperature-dependent cubic unit cell parameters have been determined and thermal expansion coefficients assessed in the range 298–1273 K using high-temperature X-ray diffraction. The thermal diffusivity of the samples was measured by the laser flash method, and the temperature-dependent thermal conductivity was calculated taking into account the porosity of the samples.
Keywords
цирконатогафнаты теплоемкость термическое расширение теплопроводность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  2. 2. Mikuskiewicz M., Migas D., Moskal G. // J. Surf. Coat. Technol. 2018. V. 354. P. 66. https://doi.org/10.1016/j.surfcoat.2018.08.096
  3. 3. Liang P., Dong S., Zeng J. et al. // Ceram. Int. 2019. V. 45. P. 22432. https://doi.org/10.1016/j.ceramint.2019.07235
  4. 4. Padture N.P., Gell M., Jordan E.H. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
  5. 5. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
  6. 6. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов: цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
  7. 7. Wang Y., Ma Z., Liu L., Liu Y. // J. Adv. Ceram. 2021. V. 10. P. 1380. https://doi.org/10.1007/s40145-021-0514-x
  8. 8. Chen H-F., Zhang C., Song P. et al. // Rare Metals. 2020. V. 39. P. 498. https://doi.org/10.1007/s12598-019-01307-1
  9. 9. Cong L., Li W., Song Q. et al. // Corros. Sci. 2022. V. 209. P. 110714. https://doi.org/10.1016/j.corsci.2022.110714
  10. 10. Poerschke D.L., Levi C.G. // J. Eur. Ceram. Soc. 2015. V. 35. P. 681. https://doi.org/10.1016/j.jeurceramsoc.2014.09.006
  11. 11. Wu J., Wei X., Padture N.P. et al. // J. Am. Ceram. Soc. V. 85. P. 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
  12. 12. Suresh G., Seenivasan G., Krishnaniah M.V. et al. // J. Nucl. Mater. 1997. V. 249. P. 259. https://doi.org/10.1016/s0022-3115 (97)00235-3
  13. 13. Suresh G., Seenivasan G., Krishnaniah M.V. et al. // J. Alloys Compd. 1998. V. 269. P. L9. https://doi.org/10.1016/s0925-8388 (97)00629-4
  14. 14. Lehmann H., Pitzer D., Pracht G. et al. // J. Am. Ceram. Soc. 2003. V. 86. P. 1338. https://doi.org/10.1111/j.1151-2916.2003.tb03473.x
  15. 15. Govindan Kutti K.V., Rajagopalan S., Mathews C.K. // Mater. Res. Bull. 1994. V. 29. P. 759. https://doi.org/10.1016/0025-5408 (94)90201-1
  16. 16. Kutti K.V.G., Rajagopalan S., Asuvathraman R. // Thermochim. Acta. 1990. V. 168. P. 205. https://doi.org/10.1016/0040-6031 (90)80639-G
  17. 17. Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1017. https://doi.org/1134/S0036023621070056
  18. 18. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 861. https://doi.org/. https://doi.org/10.1134/S0036023621060103
  19. 19. Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Ceram. Int. 2019. V. 45. P. 20733. https://doi.org/10.1016/j.ceramint.2019.07.057
  20. 20. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Inorg. Mater. 2021. V. 57. P. 1015. https://doi.org/10.1134/S0020168521100046
  21. 21. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1710. https://doi.org/10.1134/S0036023621110085
  22. 22. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052
  23. 23. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Inorg. Mater. 2021. V. 57. P. 710.https://doi.org/10.1134/S0020168521070074
  24. 24. Guskov V.N., Gavrichev K.S., Gagarin P.G. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1265. https://doi.org/10.1134/S0036023619100048
  25. 25. Wu J., Wei X., Padture N.P. et al. // J. Am. Ceram. Soc. 2002. V. 85. P. 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
  26. 26. Shlyakhtina A.V., Kondrat’eva O.N., Nikiforova G.E. et al. // Mater. Res. Bull. 2022. V. 155. P. 111971. https://doi.org/10.1016/j.materresbull.2022.111971
  27. 27. Yang P., An Y., Yang D. et al. // Ceram. Int. 2020. V. 46. № 13. P. 21367. https://doi.org/10.1016/j.ceramint.2020.05.234
  28. 28. Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. // Журн. физ. химии. 2020. Т. 94. С. 163. https://doi.org/10.31857/S0044453720020120
  29. 29. Сухаревский Б.Я., Зоз Е.И., Гавриш А.М. и др. // Докл. АН СССР. 1977. Т. 237. С. 589.
  30. 30. Зоз Е.И., Гавриш А.М., Гулько Н.В. // Неорган. материалы. 1979. Т. 15. С. 109.
  31. 31. Зоз Е.И., Яковенко Н.Г., Николаенко А.А. // Неорган. материалы. 1979. Т. 15. С. 310.
  32. 32. Бакрадзе М.М., Доронин О.Н., Артеменко Н.И. и др. // Журн. неорган. химии. 2021. Т. 66. С. 695. https://doi.org/10.31857/S0044457X21050032
  33. 33. Ryumin M.A., Nikiforova G.E., Tyurin A.V. et al. // Inorg. Mater. 2020. V. 56. P. 97. https://doi.org/10.1134/S0020168520010148
  34. 34. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. et al. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  35. 35. Svetogorov R.D. Computer program Dionis – Diffraction Open Integration Software: RF, Certificate of State Registration No. 2018660965, 30.08.2018.
  36. 36. Hubbard C.R., Evans E.H., Smith D.K. // J. Appl. Crystallogr. 1976. V. 9. № 2. P. 169. https://doi.org/10.1107/S0021889876010807
  37. 37. Meija T.B., Coplen M., Berglund W.A. et al. // Pure Appl. Chem. 2016. V. 88. P. 265. https://doi.org/10.1515/pac-2015-0305
  38. 38. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 2892. https://doi.org/2020.09072
  39. 39. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  40. 40. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  41. 41. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  42. 42. Tari A. // Sci. World. 2003. P. 211. https://doi.org/10.1142/9781860949395_0006
  43. 43. Schlichting K.W., Padture N.P., Klemens P.G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/a:1017970924312
  44. 44. Chen H., Gao Y., Liu Y. et al. // J. Alloys Compd. 2009. V. 480. № 2. P. 843. https://doi.org/10.1016/j.jallcom.2009.02.081
  45. 45. Guo X., Yu Y., Ma W. et al. // Ceram. Int. 2022. V. 48. № 24. P. 36084. https://doi.org/10.1016/j.ceramint.2022.08.122
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library