RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis of Nickel(II) Complexes Based on Dialkylphosphorylpyridines and Their Cytotoxic Activity

PII
10.31857/S0044457X23600822-1
DOI
10.31857/S0044457X23600822
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 9
Pages
1137-1145
Abstract
Bis-chelate nickel complex of composition [L2Ni(H2O)2](BF4)2 (4), where L = 1,3-dibenzhydryl-5-(pyridin-2-yl)-5-oxo-1,3,5-diazaphosphorinane, and tris-chelate complexes 5 and 6 of composition [L3Ni](BF4)2, where L = 2-diethylphosphorylpyridine and 2-diisopropylphosphorylpyridine, based on 1,4-N,O ligands L2–L4 with phosphoryl groups of acyclic and cyclic structure have been prepared. The structure and composition of complexes 4–6 were confirmed by mass-spectrometry, IR spectroscopy, thermogravimetric and elemental analysis. The structure of complexes 4-EtOH and 5 in crystals has been established by X-ray diffraction study. Cytotoxic properties toward M-HeLa and HuTu80 cancer cells and Chang Liver normal cell lines for the previously prepared nickel(II) complexes 1–3 based on 2-(oxophospholane)pyridines and the nickel(II) complexes obtained in this work have been studied. It has been found that the complexes with ligands containing cyclic phosphoryl groups show higher cytotoxicity toward cancer cells as compared with the complexes with their acyclic analogs.
Keywords
третичные фосфиноксиды циклические фосфиноксиды N,O-лиганды пиридин Ni<sup>II</sup> цитотоксичность рентгеноструктурный анализ
Date of publication
01.09.2023
Year of publication
2023
Number of purchasers
0
Views
37

References

  1. 1. Mobley H.L., Hausinger R.P. // Microbiol. Rev. 1989. V. 53. № 1. P. 85. https://doi.org/10.1128/mr.53.1.85-108.1989
  2. 2. Huang W.-S., Liu S., Zou D. et al. // J. Med. Chem. 2016. V. 59. № 10. P. 4948. https://doi.org/10.1021/acs.jmedchem.6b00306
  3. 3. Finkbeiner P.P., Hehn J., Gnamm C. // J. Med. Chem. 2020. V. 63. P. 7081. https://doi.org/10.1021/acs.jmedchem.0c00407
  4. 4. Тригулова К.Р., Шамсиева А.В., Файзуллин Р.Р. и др. // Коорд. химия. 2020. Т. 46. № 9. С. 522. Trigulova K.R., Shamsieva A.V., Fayzullin R.R. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 9. P. 600. https://doi.org/10.1134/S1070328420090055
  5. 5. Chellan P., Nasser S., Vivas L. et al. // J. Organomet. Chem. 2010. V. 695. № 19–20. P. 2225. https://doi.org/10.1016/j.jorganchem.2010.06
  6. 6. Lee S.-Y., Hille A., Frias C. et al. // J. Med. Chem. 2010. V. 53. № 16. P. 6064. https://doi.org/10.1021/jm100459k
  7. 7. Pradeepa S.M., Bhojya Naik H.S., Vinay Kumar B. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2013. V. 101. P. 132. https://doi.org/10.1016/j.saa.2012.09.062
  8. 8. Sathisha M.P., Shetti U.N., Revankar V.K. et al. // Eur. J. Med. Chem. 2008. V. 43. № 11. P. 2338. https://doi.org/10.1016/j.ejmech.2007.10.003
  9. 9. Datta S., Seth D.K., Gangopadhyay S. et al. // Inorg. Chim. Acta. 2012. V. 392. P. 118. https://doi.org/10.1016/j.ica.2012.05.034
  10. 10. Savir S., Wei Z.J., Kent Liew J.W. et al. // J. Mol. Struct. 2020. P. 128090. https://doi.org/10.1016/j.molstruc.2020.12809
  11. 11. Li P., Niu M., Hong M. et al. // J. Inorg. Biochem. 2014. V. 137. P. 101. https://doi.org/10.1016/j.jinorgbio.2014.04.0
  12. 12. Sousa L.M., Souza W.A., Paixao D.A. et al. // Inorg. Chim. Acta. 2020. V. 511. P. 119824. https://doi.org/10.1016/j.ica.2020.119824
  13. 13. Шамсиева А.В., Тригулова К.Р., Файзуллин Р.Р. и др. // Изв. АН. Сер. хим. 2018. Т. 67. № 7. С. 1206. Shamsieva A.V., Trigulova K.R., Fayzullin R.R. et al. // Russ. Chem. Bull. (Int. Ed.) 2018. V. 67. № 7. Р. 1206. https://doi.org/10.1007/s11172-018-2203-7
  14. 14. Тригулова К.Р., Шамсиева А.В., Касимов А.И. и др. // Изв. АН. Сер. хим. 2022. № 7. С. 1410. Trigulova K.R., Shamsieva A. V., Kasimov A.I. et al. // Russ. Chem. Bull. 2022. V. 71. № 7. P. 1410. https://doi.org/10.1007/s11172-022-3547-6
  15. 15. Enikeeva K.R., Shamsieva A.V., Kasimov A.I. et al. // Inorg. Chim. Acta. 2023. V. 545. P. 121286. https://doi.org/10.1016/j.ica.2022.121286
  16. 16. APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program Version 7.31A, Bruker Advansed X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2006.
  17. 17. Sheldrik G.M. SADABS, Program for empirical X-ray absorption correction, Bruker-Nonis, 1990–2004.
  18. 18. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3.
  19. 19. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3.
  20. 20. Spek A.L. // Acta Crystallogr., Sect. D. 2009. V. 65. P. 148.
  21. 21. Farrugia L.J., Win J. // J. Appl. Crystallogr. 2012. V. 45. P. 849.
  22. 22. Macrae C.F., Sovago I. et al. // J. Appl. Crystallogr. 2020. V. 53. P. 226. https://doi.org/10.1107/S1600576719014092
  23. 23. Zhang S., Pattacini R., Jiea S. et al. // Dalton Trans. 2012. V. 41. P. 379. https://doi.org/10.1039/c1dt11352f
  24. 24. Li Z., Sun W.-H., Wang L. et al. // J. Chem. Crystallogr. 2002. V. 32. P. 107. https://doi.org/10.1023/A:1015673100877
  25. 25. Dodoff N., Maccek J., Angelova O. et al. // J. Coord. Chem. 2015. V. 22. P. 219. https://doi.org/10.1080/00958979009408218
  26. 26. Montagner D., Fresch B., Browne K. et al. // Chem. Commun. 2017. V. 53. № 1. P. 134. https://doi.org/10.1039/C6CC08100B
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library