- PII
- 10.31857/S0044457X23600809-1
- DOI
- 10.31857/S0044457X23600809
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 10
- Pages
- 1447-1453
- Abstract
- The band structures of two series of chiral single-walled gold nanotubes (5, n2) and (10, n2) have been calculated using the cylindrical wave method with inclusion of spin–orbit coupling. Compounds with high spin polarizability of the electronic structure and spin selectivity of conductivity have been revealed. They can be used as materials for design of molecular spintronics elements.
- Keywords
- золотые нанотрубки хиральность цилиндрические волны спин-орбитальное взаимодействие спиновые токи наноэлектроника
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Kondo Y. // Science. 2000. V. 289. P. 606. https://doi.org/10.1126/science.289.5479.606
- 2. Oshima Y., Onga A., Takayanagi K. // Phys. Rev. Lett. 2003. V. 91. P. 205503. https://doi.org/10.1103/PhysRevLett.91.205503
- 3. Bridges C.R., DiCarmine P.M., Fokina A. et al. // J. Mater. Chem. A. 2013. V. 1. P. 1127. https://doi.org/10.1103/PhysRevLett.91.205503
- 4. Hendren W.R., Murphy A., Evans P. et al. // J. Phys.: Condens. Matter. 2008. V. 20. P. 362203. https://doi.org/10.1088/0953-8984/20/36/362203
- 5. Wang H.W., Shieh C.F., Chen H.Y. et al. // Nanotechnology. 2006. V. 17. P. 2689. https://doi.org/10.1088/0957-4484/17/10/041
- 6. Bridges C.R., DiCarmine P.M., Seferos D.S. // Chem. Mater. 2012. V. 24. P. 965. https://doi.org/10.1021/cm203184d
- 7. Shamraiz U., Raza B., Hussain H. et al. // Int. Mater. Rev. 2018. V. 64. P. 1743. https://doi.org/10.1080/09506608.2018.1554991
- 8. Kohl J., Fireman M., O’Carroll D.M. // Phys. Rev. B. 2011. V. 84. P. 235118. https://doi.org/10.1103/PhysRevB.84.235118
- 9. Wang J., Zhang C., Zhang J. et al. // Adv. Opt. Mater. 2017. V. 5. P. 1600731. https://doi.org/10.1002/adom.201600731
- 10. Ye S., Marston G., McLaughlan J.R. et al. // Adv. Funct. Mater. 2015. V. 25. P. 2117. https://doi.org/10.1002/adfm.201404358
- 11. Ye S., Marston G., Markham A.F. et al. // J. Phys.: Conf. Ser. 2019. V. 1151. P. 012018. https://doi.org/10.1088/1742-6596/1151/1/012018
- 12. Navyatha B., Kumar R., Nara S.A. // J. Environ. Chem. Eng. 2016. V. 4. P. 924. https://doi.org/10.1016/j.jece.2015.12.033
- 13. Oshima Y., Mouri K., Hirayama H. et al. // J. Phys. Soc. Jpn. 2006. V. 75. P. 053705. https://doi.org/10.1143/jpsj.75.053705
- 14. Del Valle M., Tejedor C., Cuniberti G. // Phys. Rev. B. 2006. V. 74. P. 045408. https://doi.org/10.1103/PhysRevB.74.045408
- 15. Manrique D.Zs., Cserti J., Lambert C.J. // Phys. Rev. B. 2010. V. 81. P. 073103. https://doi.org/10.1103/PhysRevB.81.073103
- 16. D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. C. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
- 17. D’yachkov P.N. // Chem. Phys. Lett. 2020. V. 752. P. 137542. https://doi.org/10.1016/j.cplett.2020.137542
- 18. D'yachkov P.N. // Chem. Phys. Lett. 2021. V. 782. P. 139032. https://doi.org/10.1016/j.cplett.2021.139032
- 19. Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
- 20. Yang S.H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- 21. Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
- 22. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
- 23. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
- 24. Waldeck D.H., Naaman R., Paltiel Y. // APL Mater. 2021. V. 9. P. 040902. https://doi.org/10.1063/5.0049150
- 25. Yeom J. // Acc. Mater. Res. 2021. V. 2. P. 471. https://doi.org/10.1021/accountsmr.1c00059
- 26. Yang X., van der Wal C.H., van Wees B.J. // Nano Lett. 2020. V. 20. P. 6148. https://doi.org/10.1021/acs.nanolett.0c02417
- 27. Yeganeh S., Ratner M.A., Medina E. et al. // J. Chem. Phys. 2009. V. 131. P. 014707. https://doi.org/10.1063/1.3167404
- 28. Gutierrez R., Díaz E., Naaman R. et al. // Phys. Rev. B. 2012. V. 85. P. 081404. https://doi.org/10.1103/PhysRevB.85.081404
- 29. Gutierrez R., D́ıaz E., Gau C. et al. // J. Phys. Chem. C. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
- 30. Eremko A.A., Loktev V.M. // Phys. Rev. B. 2013. V. 88. P. 165409. https://doi.org/10.1103/PhysRevB.88.165409
- 31. Yang X., van der Wal C.H., van Wees B.J. // Phys. Rev. B. 2019. V. 99. P. 024418. https://doi.org/10.1103/PhysRevB.99.024418
- 32. Dalum S., Hedegård P. // Nano Lett. 2019. V. 19. P. 5253. https://doi.org/10.1021/acs.nanolett.9b01707
- 33. Rahman W., Firouzeh S., Mujica V. et al. // ACS Nano. 2020. V. 14. P. 3389. https://doi.org/10.1021/acsnano.9b09267
- 34. Ghazaryan A., Paltie Y., Lemeshko M. // J. Phys. Chem. C. 2020. V. 124. P. 11716. https://doi.org/10.1021/acs.jpcc.0c02584
- 35. D’yachkov P.N., Lomakin N.A. // Russ. J. Inorg. Chem. 2023. V. 68. № 4. P. 424. https://doi.org/10.1134/S0036023622602823
- 36. D’yachkov E.P., Lomakin N.A., D’yachkov P.N. // Russ. J. Inorg. Chem. 2023. V. 68. № 7.
- 37. D’yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical waves. 2019. London: CRC Press, Taylor and Francis, 212 p.
- 38. Shih P-H., Gumbs G., Huang D. et al. // J. Appl. Phys. 2022. V. 132. P. 154302. https://doi.org/10.1063/5.0107527
- 39. Manchon A., Koo H.C., Nitta J. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
- 40. Craighead H.G. Science. 2000. V. 290. P. 1532. https://doi.org/10.1126/science.290.5496.1532
- 41. D’yachkov P.N., D’yachkov E.P. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1196. https://doi.org/10.1134/S0036023620070074