- PII
- 10.31857/S0044457X23600706-1
- DOI
- 10.31857/S0044457X23600706
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 9
- Pages
- 1146-1153
- Abstract
- A new unsymmetrical terbium bis-Phthalocyaninate Tb(A7B) with one terminal aliphatic OH group was obtained by template cross-condensation of diethoxyphthalonitrile (A) and phthalonitrile (B) functionalized with diethylene glycol moiety. The subsequent functionalization of the complex included the successive replacement of this OH group by the iodide and thioacetate substituents. The synthesized complexes can act as components of hybrid materials upon immobilization on surfaces of various nature.
- Keywords
- фталоцианин двухпалубный комплекс тербий якорные группы молекулярный магнетизм гибридные материалы
- Date of publication
- 01.09.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 49
References
- 1. Coronado E. // Nat. Rev. Mater. 2019. V. 5. № 2. P. 87. https://doi.org/10.1038/s41578-019-0146-8
- 2. Yamashita M. // Bull. Chem. Soc. Jpn. 2021. V. 94. № 1. P. 209. https://doi.org/10.1246/bcsj.20200257
- 3. Wang H., Wang B.W., Bian Y. et al. // Coord. Chem. Rev. 2016. V. 306. № P1. P. 195. https://doi.org/10.1016/j.ccr.2015.07.004
- 4. Martynov A.G., Horii Y., Katoh K. et al. // Chem. Soc. Rev. 2022. V. 51. № 22. P. 9262. https://doi.org/10.1039/d2cs00559j
- 5. Basova T.V., Ray A.K. // ECS J. Solid State Sci. Technol. 2020. V. 9. № 6. P. 061001. https://doi.org/10.1149/2162-8777/ab9fe8
- 6. Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
- 7. Chan W.L., Xie C., Lo W.S. et al. // Chem. Soc. Rev. 2021. V. 50. № 21. P. 12189. https://doi.org/10.1039/c9cs00828d
- 8. Bouvet M., Gaudillat P., Suisse J.-M.M. // J. Porphyr. Phthalocyanines 2013. V. 17. № 08n09. P. 628. https://doi.org/10.1142/S1088424613300048
- 9. Tanaka D., Inose T., Tanaka H. et al. // Chem. Commun. 2012. V. 48. № 63. P. 7796. https://doi.org/10.1039/c2cc00086e
- 10. Gonidec M., Davies E.S., McMaster J. et al. // J. Am. Chem. Soc. 2010. V. 132. № 6. P. 1756. https://doi.org/10.1021/ja9095895
- 11. Konarev D.V., Khasanov S.S., Batov M.S. et al. // Inorg. Chem. 2019. V. 58. № 8. P. 5058. https://doi.org/10.1021/acs.inorgchem.9b00131
- 12. Horii Y., Kishiue S., Damjanović M. et al. // Chem. – A Eur. J. 2018. V. 24. № 17. P. 4320. https://doi.org/10.1002/chem.201705378
- 13. Katoh K., Yasuda N., Damjanović M. et al. // Chem. – A Eur. J. 2020. V. 26. № 21. P. 4805. https://doi.org/10.1002/chem.201905400
- 14. Stepanow S., Honolka J., Gambardella P. et al. // J. Am. Chem. Soc. 2010. V. 132. № 34. P. 11900. https://doi.org/10.1021/ja105124r
- 15. Zhang Y., Wang Y., Liao P. et al. // ACS Nano 2018. V. 12. № 3. P. 2991. https://doi.org/10.1021/acsnano.8b00751
- 16. Malavolti L., Poggini L., Margheriti L. et al. // Chem. Commun. 2013. V. 49. № 98. P. 11506. https://doi.org/10.1039/c3cc46868b
- 17. Urdampilleta M., Nguyen N.V., Cleuziou J.P. et al. // Int. J. Mol. Sci. 2011. V. 12. № 10. P. 6656. https://doi.org/10.3390/ijms12106656
- 18. Gómez-Segura J., Díez-Pérez I., Ishikawa N. et al. // Chem. Commun. 2006. № 27. P. 2866. https://doi.org/10.1039/B606276H
- 19. Katoh K., Sato J., Nakanishi R. et al. // J. Mater. Chem. C 2021. V. 9. № 33. P. 10697. https://doi.org/10.1039/D1TC01026C
- 20. Schweikart K.-H., Malinovskii V.L., Diers J.R. et al. // J. Mater. Chem. 2002. V. 12. № 4. P. 808. https://doi.org/10.1039/b108520d
- 21. Britton J., Martynov A.G., Oluwole D.O. et al. // J. Porphyr. Phthalocyanines 2016. V. 20. P. 1296. https://doi.org/10.1142/S1088424616501042
- 22. Oluwole D.O., Yagodin A.V., Britton J. et al. // Dalton Trans. 2017. V. 46. № 46. P. 16190. https://doi.org/10.1039/C7DT03867D
- 23. Managa M., Khene S., Britton J. et al. // J. Porphyr. Phthalocyanines 2018. V. 22. № 01n03. P. 137. https://doi.org/10.1142/S1088424618500128
- 24. Oluwole D.O., Yagodin A.V., Mkhize N.C. et al. // Chem. Eur. J. 2017. V. 23. № 12. P. 2820. https://doi.org/10.1002/chem.201604401
- 25. Iqbal Z., Lyubimtsev A., Hanack M. // Synlett 2008. № 15. P. 2287. https://doi.org/10.1055/s-2008-1078269
- 26. Martynov A.G., Birin K.P., Gorbunova Y.G. et al. // Macroheterocycles 2013. V. 6. № 1. P. 23. https://doi.org/10.6060/mhc130221m
- 27. Takamatsu S., Ishikawa T., Koshihara S. et al. // Inorg. Chem. 2007. V. 46. № 18. P. 7250. https://doi.org/10.1021/ic700954t
- 28. Platonova Y.B., Volov A.N., Tomilova L.G. // J. Catal. 2019. V. 373. P. 222. https://doi.org/10.1016/j.jcat.2019.04.003
- 29. Alpugan S., İşci Ü., Albrieux F. et al. // Chem. Commun. 2014. V. 50. № 56. P. 7466. https://doi.org/10.1039/c4cc02523g
- 30. Shokurov A.V., Yagodin A.V., Martynov A.G. et al. // ECS J. Solid State Sci. Technol. 2020. V. 9. № 5. P. 051006. https://doi.org/10.1149/2162-8777/ab9a5e
- 31. Shokurov A.V., Yagodin A.V., Martynov A.G. et al. // Small 2022. V. 18. № 2. P. 2104306. https://doi.org/10.1002/smll.202104306
- 32. May A., Majumdar P., Martynov A.G. et al. // J. Porphyr. Phthalocyanines 2020. V. 24. № 04. P. 589. https://doi.org/10.1142/S108842462050011X
- 33. Gorbunova Y.G., Martynov A.G., Birin K.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 202. https://doi.org/10.1134/S0036023621020091
- 34. Mukherjee D., Manjunatha R., Sampath S. et al. // Phthalocyanines as Sensitive Materials for Chemical Sensors, in: Mater. Chem. Sens., Springer International Publishing, Cham, 2017: pp. 165–226 https://doi.org/10.1007/978-3-319-47835-7_8
- 35. Zhang Y., Cai X., Bian Y. et al. // Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs), in: J. Jiang (Ed.), Funct. Phthalocyanine Mol. Mater., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 275–322 https://doi.org/10.1007/978-3-642-04752-7
- 36. Kumar A., Meunier-Prest R., Bouvet M. // Sensors. 2020. V. 20. № 17. P. 4700. https://doi.org/10.3390/s20174700