RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Transformations of Cerium Tetrafluoride Hydrate under Hydrothermal Conditions: A New Cerium Fluoride Hydrate Се3F10 ⋅ 3Н2О

PII
10.31857/S0044457X23600688-1
DOI
10.31857/S0044457X23600688
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 10
Pages
1348-1357
Abstract
The behavior of cerium tetrafluoride hydrate was studied in water at a temperature of 80°C and under hydrothermal treatment at 100, 130, and 220°C for a day. The product of the hydrothermal treatment of CeF4·H2O at 100°C was investigated by chemical, thermogravimetric, IR spectroscopic, and X-ray powder diffraction analyses, which identified a new cerium fluoride with the composition, presumably, Ce3F10⋅3H2O or, most likely, (H3O)Ce3F10⋅2H2O. New compound crystallizes in the space group with a unit cell parameter of 11.66 Å. Hydrothermal treatment of cerium tetrafluoride hydrate at temperatures above 130°C leads to hydrolysis and reduction of cerium(IV) fluoride compounds to form CeO2 and CeF3.
Keywords
тетрафторид церия трифторид церия диоксид церия редкоземельные элементы
Date of publication
01.10.2023
Year of publication
2023
Number of purchasers
0
Views
51

References

  1. 1. Lin H.-J., Li H.-W., Murakami H. et al. // J. Alloys Compd. 2018. V. 735. P. 1017. https://doi.org/10.1016/j.jallcom.2017.10.239
  2. 2. Liu G.K., Jursich G., Huang J. et al. // J. Alloys Compd. 1994. V. 213–214. P. 207. https://doi.org/10.1016/0925-8388 (94)90905-9
  3. 3. Sun Y., Yang X., Mei H. et al. // ACS Omega. 2021. V. 6. № 17. P. 11348. https://doi.org/10.1021/acsomega.1c00332
  4. 4. Haase M., Schäfer H. // Angew. Chem. Int. Ed. 2011. V. 50. P. 5808. https://doi.org/10.1002/anie.201005159
  5. 5. Shan G.-B., Demopoulos G.P. // Adv. Mater. 2010. V. 22. P. 4373. https://doi.org/10.1002/adma.201001816
  6. 6. van der Ende B.M., Aarts L., Meijerink A. // Phys. Chem. Chem. Phys. 2009. V. 11(47). P. 11081. https://doi.org/10.1039/b913877c
  7. 7. Wang F., Liu X. // Chem. Soc. Rev. 2009. V. 38(4). P. 976. https://doi.org/10.1039/b809132n
  8. 8. Wang F., Banerjee D., Liu Y. et al. // Analyst. 2010. V. 135. P. 1839. https://doi.org/10.1039/c0an00144a
  9. 9. Chilingarov N.S., Knot’ko A.V., Shlyapnikov I.M. et al. // J. Phys. Chem. A. 2015. V. 119(31). P. 8452. https://doi.org/10.1021/acs.jpca.5b04105
  10. 10. Binnemans K. // Handbook on the Physics and Chemistry of Rare Earths. 2006. V. 36. P. 281. https://doi.org/10.1016/S0168-1273 (06)36003-5
  11. 11. Furuya T., Kamlet A.S., Ritter T. // Nature. 2011. V. 473. P. 470. https://doi.org/10.1038/nature10108
  12. 12. Grzechnik A., Underwood C.C., Kolis J.W. et al. // J. Fluor. Chem. 2013. V. 156. P. 124. https://doi.org/10.1016/j.jfluchem.2013.09.002
  13. 13. Lopez C., Deschanels X., Bart J.M. et al. // J. Nucl. Mater. 2003. V. 312. P. 76. https://doi.org/10.1016/S0022-3115 (02)01549-0
  14. 14. Marsac R., Réal F., Banik N.L. et al. // Dalton. Trans. 2017. V. 46. P. 13553. https://doi.org/10.1039/C7DT02251D
  15. 15. Schmidt R., Müller B.G. // Z. Anorg. Allg. Chem. 1999. V. 625. P. 605. https://doi.org/10.1002/ (SICI)1521-3749(199904)62-5:43.0.CO;2-6
  16. 16. Zachariasen W.H. // Acta Crystallogr. 1949. V. 2. P. 388. https://doi.org/10.1107/S0365110X49001016
  17. 17. Brown D. // Halides of the Lanthanides and Actinides. New York: Wiley, 1968. 288 p.
  18. 18. Gabela F., Kojić-Prodić B., Šljukić M. et al. // Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1977. V. 33(12). P. 3733. https://doi.org/10.1107/S0567740877011960
  19. 19. Waters T.N. // J. Inorg. Nucl. Chem. 1960. V. 15. P. 320. https://doi.org/10.1016/0022-1902 (60)80061-9
  20. 20. Hall D., Rickard C.E.F., Waters T.N. // Nature. 1965. V. 207. P. 405. https://doi.org/10.1038/207405b0
  21. 21. Gerasimenko A.V., Davidovich R.L., Tkachev V.V. et al. // Acta Crystallogr., Sect. E: Struct. Reports Online. 2006. V. 62(2). P. M196. https://doi.org/10.1107/S1600536805042479
  22. 22. Du Y., Yu J., Chen Y. et al. // Dalton. Trans. 2009. V. 2009. P. 6736. https://doi.org/10.1039/b902998b
  23. 23. Гельмбольдт В.О., Ганин Э.В., Короева Л.В. и др. // Журн. неорган. химии. 2001. Т. 46. № 11. С. 1833.
  24. 24. Рахматуллаев К., Талипов Ш.Т., Юсупова Р. // Докл. АН УзССР. 1962. № 4. P. 46.
  25. 25. Опаловский А.А. // Изв. СО АН СССР. 1964. Т. 67. С. 46.
  26. 26. Киселев Ю.М., Мартыненко Л.И., Спицын В.И. // Журн. неорган. химии. 1975. Т. 20. С. 576.
  27. 27. Asker W., Wylie A. // Aust. J. Chem. 1965. V. 18. № 7. P. 959. https://doi.org/10.1071/CH9650959
  28. 28. Il’in E.G., Parshakov A.S., Iskhakova L.D. et al. // J. Fluor. Chem. 2020. V. 236. P. 109576. https://doi.org/10.1016/j.jfluchem.2020.109576
  29. 29. Dawson J.K., D’Eye R.W.M., Truswell A.E. // J. Chem. Soc. 1954. P. 3922. https://doi.org/10.1039/jr9540003922
  30. 30. Champion M.J.D., Levason W., Reid G. // J. Fluor. Chem. 2014. V. 157. P. 19. https://doi.org/10.1016/j.jfluchem.2013.10.014
  31. 31. Il’in E.G., Parshakov A.S., Yarzhemsky V.G. et al. // J. Fluor. Chem. 2021. V. 251. P. 109897. https://doi.org/10.1016/j.jfluchem.2021.109897
  32. 32. Le Berre F., Boucher E., Allain M. et al. // J. Mater. Chem. 2000. V. 10. P. 2578. https://doi.org/10.1039/b002520h
  33. 33. Cheetham A.K., Fender B.E.F., Fuess H. et al. // Acta Crystallogr., Sect. B. 1976. V. 32. P. 94. https://doi.org/10.1107/S0567740876002380
  34. 34. Kuznetsov S.V., Osiko V.V., Tkatchenko E.A. et al. // Russ. Chem. Rev. 2006. V. 75. P. 1065. https://doi.org/10.1070/RC2006v075n12ABEH003637
  35. 35. Caron C., Boudreau D., Ritcey A.M. // J. Mater. Chem. C. 2015. V. 3. P. 9955. https://doi.org/10.1039/C5TC02527C
  36. 36. Andrrev O.V., Razumkova I.A., Boiko A.N. // J. Fluor. Chem. 2018. V. 207. P. 77. https://doi.org/10.1016/j.jfluchem.2017.12.001
  37. 37. Stephens N.F., Lightfoot P. // J. Solid State Chem. 2007. V. 180. P. 260. https://doi.org/10.1016/j.jssc.2006.09.032
  38. 38. Podberezskaya N.V., Potapova O.G., Borisov S.V. et al. // J. Struct. Chem. 1977. V. 17. P. 815. https://doi.org/10.1007/BF00746034
  39. 39. Fedorov P.P., Kuznetsov S.V., Osiko V.V. // Progress in Fluorine Science Series. Elsevier, 2016. P. 7. https://doi.org/10.1016/B978-0-12-801639-8.00002-7
  40. 40. Fedorov P.P., Mayakova M.N., Kuznetsov S.V. et al. // Nanosyst. Physics, Chem. Math. 2017. V. 8(4). P. 462. https://doi.org/10.17586/2220-8054-2017-8-4-462-470
  41. 41. Dzhabiev T.S., Tkachenko V.Y., Dzhabieva Z.M. et al. // Russ. J. Phys. Chem. A. 2020. V. 94(7). P. 1330. https://doi.org/10.1134/S0036024420060096
  42. 42. Kärkäs M.D., Verho O., Johnston E.V. et al. // Chem. Rev. 2014. V. 114. P. 11863. https://doi.org/10.1021/cr400572f
  43. 43. Prieur D., Bonani W., Popa K. et al. // Inorg. Chem. 2020. V. 59. P. 5760. https://doi.org/10.1021/acs.inorgchem.0c00506
  44. 44. Plakhova T.V., Romanchuk A.Y., Butorin S.M. et al. // Nanoscale. 2019. V. 11. P. 18142. https://doi.org/10.1039/c9nr06032d
  45. 45. Finkelnburg W., Stein A. // J. Chem. Phys. 1950. V. 18. P. 1296. https://doi.org/10.1063/1.1747929
  46. 46. Udayakantha M., Schofield P., Waetzig G.R. et al. // J. Solid State Chem. 2019. V. 270. P. 569. https://doi.org/10.1016/j.jssc.2018.12.017
  47. 47. Baenziger N.C., Holden J.R., Knudson G.E. et al. // J. Am. Chem. Soc. 1954. V. 76. P. 4734. https://doi.org/10.1021/ja01647a073
  48. 48. Zakiryanova I.D., Mushnikov P.N., Nikolaeva E.V. et al. // Processes. 2023. V. 11. P. 988. https://doi.org/10.3390/pr11040988
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library