RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Preparation of NASICON Silico Phosphates of Composition Na1 + xZr2SixP3 – xO12 by Pyrolysis of Solution in Melt

PII
10.31857/S0044457X23600366-1
DOI
10.31857/S0044457X23600366
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 8
Pages
1042-1049
Abstract
A new method for preparing Na1 + xZr2SixP3 – xO12 (0 < x < 3) based on pyrolysis of solution containing a mixture of organic components in rosin melt has been proposed. Effect of superstoichiometric amounts of sodium and phosphorus on the phase composition of synthesis products has been proved. It has been found that precursor for the sample of maximal purity of phase composition is prepared at molar ratio Na : Zr : Si : P = (1.15 + x) : 2 : x : (y – x), where y = 3 (1.20 + x)/(1 + x). Precursor calcination temperature is 1000°C. Different NASICON compositions without crystalline admixtures have been obtained in the range 1.5 ≤ x ≤ 2.12. The prepared samples have been studied by X-ray powder diffraction and scanning electron microscopy. The disclosed method of synthesis is promising for the preparation of NASICON as both bulk materials and thin layer coatings.
Keywords
NASICON пиролиз органических растворов фазовый состав твердый электролит
Date of publication
01.08.2023
Year of publication
2023
Number of purchasers
0
Views
46

References

  1. 1. Hong H.Y.-P. // Mater. Res. Bull. 1976. V. 11. № 2. P. 173. https://doi.org/10.1016/0025-5408 (76)90073-8
  2. 2. Goodenough J.B., Hong H.Y.-P., Kafalas J.A. // Mater. Res. Bull. 1976. V. 11. № 2. P. 203. https://doi.org/10.1016/0025-5408 (76)90077-5
  3. 3. Miyachi Y., Sakai G., Shimanoe K., Yamazoe N. // Sens. Actuators, B. 2003. V. 93. № 1–3. P. 250. https://doi.org/10.1016/S0925-4005 (03)00174-6
  4. 4. Paściak G., Mielcarek W., Prociów K., Warycha J. // Ceram. Int. 2014. V. 40. № 8. P. 12783. https://doi.org/10.1016/j.ceramint.2014.04.132
  5. 5. Meunier M., Izquierdo R., Hasnaoui L. et al. // Appl. Surf. Sci. 1998. V. 127–129. P. 466. https://doi.org/10.1016/S0169-4332 (97)00674-0
  6. 6. Tetsuya K., Miyachi Y., Shimanoe K., Yamazoe N. // Sens. Actuators, B. 2001. V. 80. № 1. P. 28. https://doi.org/10.1016/S0925-4005 (01)00878-4
  7. 7. Kim H.J., Choi J.W., Kim S.D., Yoo K.S. // Mater. Sci. Forum. 2007. V. 544–545. P. 925. https://doi.org/10.4028/www.scientific.net/MSF.544-545.925
  8. 8. Jalalian-Khakshour A., Phillips Ch., Jackson L. et al. // J. Mater. Sci. 2020. V. 55. P. 2291. https://doi.org/10.1007/s10853-019-04162-8
  9. 9. Naqash S., Sebold D., Tietz F., Guillon O. // J. Am. Ceram. Soc. 2019. V. 102. № 3. P. 1057. https://doi.org/10.1111/jace.15988
  10. 10. Yang G., Zhai Y., Yao J. et al. // Chem. Commun. 2021. V. 57. P. 4023. https://doi.org/10.1039/d0cc07261c
  11. 11. Noguchi Y., Kobayashi E., Plashnitsa L.-S. et al. // Electrochim. Acta. 2013. V.101. P. 59. https://doi.org/10.1016/j.electacta.2012.11.038
  12. 12. Fuentes R.O., Marques F.M.B., Franco J.I. // Bol. Soc. Esp. Ceram. Vidrio. 1999. V. 38. № 6. P. 631.
  13. 13. Fuentes R.O., Figueiredo F., Marques F.-M.B., Franco J.I. // Solid State Ionics. 2001. V. 139. № 3–4. P. 309. https://doi.org/10.1016/S0167-2738 (01)00683-X
  14. 14. Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1–2. P. 173. https://doi.org/10.1016/S0167-2738 (01)00701-9
  15. 15. Shimizu Y., Azuma Y., Michishita S. // J. Mater. Chem. 1997. V. 7. P. 1487.
  16. 16. Naqash S., Tietz F., Yazhenskikh E. et al. // Solid State Ionics. 2019. V. 336. P. 57. https://doi.org/10.1016/j.ssi.2019.03.017
  17. 17. Грищенко Д.Н., Курявый В.Г., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2023. № 1. С. 17. https://doi.org/10.31857/S0044457X22601043
  18. 18. Грищенко Д.Н., Дмитриева Е.Э., Медков М.А. // Хим. технология. 2022. Т. 23. № 10. С. 418. https://doi.org/10.31044/1684-5811-2022-23-10-418-423
  19. 19. Narayanan S., Reid S., Butler S., Thangadurai V. // Solid State Ionics. 2019. V. 331. P. 22. https://doi.org/10.1016/j.ssi.2018.12.003
  20. 20. Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366–377. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
  21. 21. Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14. № 3. P. 823. https://doi.org/10.1039/d1nr06959d
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library