- PII
- 10.31857/S0044457X23600147-1
- DOI
- 10.31857/S0044457X23600147
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 7
- Pages
- 885-895
- Abstract
- Au, Fe, and AuFe nanoparticles were obtained by metal vapor synthesis using acetone as the dispersion medium. The composition and electronic structure of the particles were studied by TEM, SEM, XPS, XANES, and EXAFS. The Au and Fe particles with average diameters of 5.3 and 1.8 nm, respectively, were obtained. According to X-ray diagnostic methods, gold was in the main Au0 state, and the Au+ and Au3+ states are present in small amounts while iron existed as mixture of non-stoichiometric oxides with states close to Fe2+ and Fe3+. Bimetallic nanoparticles were solid solutions with a disordered structure and Au–Fe–O and Au–O–Fe bonds. A carbon-containing shell was detected for all types of metal particles. The obtained materials may be promising for the development of improved antimicrobial agents and new methods for treating cancer diseases.
- Keywords
- наночастицы железо золото металло-паровой синтез РФЭС EXAFS/XANES
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Conde J., Doria G., Baptista P. // J. Drug Delivery. 2012. V. 2012. P. 1. https://doi.org/10.1155/2012/751075
- 2. Vinardell M.P., Mitjans M. // Nanomaterials. 2015. V. 5. № 2. P. 1004. https://doi.org/10.3390/nano5021004
- 3. Sutradhar K.B., Amin M.L. // ISRN Nanotechnology. 2014. V. 2014. P. 1. https://doi.org/10.1155/2014/939378
- 4. Zhao G., Rodriguez B.L. // Int. J. Nanomedicine. 2013. V. 8. P. 61. https://doi.org/10.1371/journal.pone.0065896
- 5. Akhtar M.J., Alhadlaq H.A., Kumar S. et al. // Arch Toxicol. 2015. V. 89. № 11. P. 1895. https://doi.org/10.1007/s00204-015-1570-1
- 6. Ahmad M.Z., Akhter S., Jain G.K. et al. // Expert Opin Drug Deliv. 2010. V. 7. № 8. P. 927. https://doi.org/10.1517/17425247.2010.498473
- 7. Гилевская К.С., Машкин М.Е., Красковский А.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1017. https://doi.org/10.31857/S0044457X21080067
- 8. Attari E., Nosrati H., Danafar H. et al. // J. Biomed. Mater. Res. 2019. V. 107. P. 2492. https://doi.org/10.1002/jbm.a.36755
- 9. Rostami M., Aghajanzadeh M., Zamani M. et al. // Res. Chem. Intermed. 2018. V. 44. P. 1889. https://doi.org/10.1007/s11164-017-3204-0
- 10. Ершов A.Ю., Мартыненков A.A., Якиманский A.В. и др. // Журн. общ. химии. 2022. Т. 92. № 5. С. 788. https://doi.org/10.31857/S0044460X22050146
- 11. Zamani M., Rostami M., Aghajanzadeh M. et al. // J. Mater Sci. 2018. V. 53. P. 1634. https://doi.org/10.1007/s10853-017-1673-6
- 12. Zain N.M., Stapley A.G.F., Shama G. // Carbohydrate Polymers. 2014. V. 112. P. 195. https://doi.org/10.1016/j.carbpol.2014.05.081
- 13. Valodkar M., Modi S., Pal A. et al. // Mater. Res. Bull. 2011. V. 46. P. 384. https://doi.org/10.1016/j.materresbull.2010.12.001
- 14. Dong Q., Yang H., Wan C. et al. // Nanoscale Res. Lett. 2019. V. 14. P. 235. https://doi.org/10.1186/s11671-019-3053-4
- 15. Efremova M.V., Veselov M.M., Barulin A.V. et al. // ACS Nano. 2018. V. 12. P. 3190. https://doi.org/10.1021/acsnano.7b06439
- 16. Efremova M.V., Naumenko V.A., Spasova M. et al. // Sci. Rep. 2018. V. 8. P. 11295. https://doi.org/10.1038/s41598-018-29618-w
- 17. Hao Zh., Cheng D., Guo Y. et al. // Appl. Catal. B: Environ. 2001. V. 33. P. 217. https://doi.org/10.1016/S0926-3373 (01)00172-2
- 18. Seeburg D., Liu D., Radnik J. et al. // Catalysts. 2018. V. 8. P. 42. https://doi.org/10.3390/catal8020042
- 19. Naumkin A.V., Budnikov A.V., Buzin M.I. et al. // Ineos Open. 2022. V. 1. P. 1. https://doi.org/10.32931/io2126a
- 20. Finch R.M., Hodge N.A., Hutchings G.J. et al. // Phys. Chem. Chem. Phys. 1999. V. 1. P. 485. https://doi.org/10.1039/A808208A
- 21. Tomitaka A., Arami H., Raymond A. et al. // RSC Nanoscale. 2017. V. 9. P. 764. https://doi.org/10.1039/C6NR07520G
- 22. Kozenkova E., Levada K., Efremova M.V. et al. // Nanomaterials. 2020. V. 10. P. 1646. https://doi.org/10.3390/nano10091646
- 23. Cai H., Li K., Li J. et al. // Small. 2015. V. 11. P. 4584. https://doi.org/10.1002/smll.201500856
- 24. Maniglio D., Benetti F., Minati L. et al. // Nanotechnology. 2018. V. 29. P. 315101. https://doi.org/10.1088/1361-6528/aac4ce
- 25. Brennan G., Thorat N.D., Pescio M. et al. // RSC Nanoscale. 2020. V. 12. P. 12632. https://doi.org/10.1039/D0NR01463J
- 26. Guardia P., Nitti S., Materia M.E. et al. // RSC J. Mater. Chem. B. 2017. V. 5. P. 4587. https://doi.org/10.1039/C7TB00968B
- 27. Leung K.C.-F., Xuan S., Zhu X. et al. // RSC Chem. Soc. Rev. 2012. V. 41. P. 1911. https://doi.org/10.1039/C1CS15213K
- 28. Tomitaka A., Ota S., Nishimoto K. et al. // RSC Nanoscale. 2019. V. 11. P. 6489. https://doi.org/10.1039/C9NR00242A
- 29. Majouga A., Sokolsky-Papkov M., Kuznetsov A. et al. // Colloids Surf. B. 2015. V. 125. P. 104. https://doi.org/10.1016/j.colsurfb.2015.11.009
- 30. Kinoshita T., Seino S., Okitsu K. et al. // J. Alloys Compounds. 2003. V. 359. P. 46. https://doi.org/10.1016/S0925-8388 (03)00198-1
- 31. Lin J., Zhou W., Kumbhar A. et al. // J. Solid State Chem. 2001. V. 159. P. 26. https://doi.org/10.1006/jssc.2001.9117
- 32. Roduner E. // Chem. Soc. Rev. 2006. V. 35. P. 583. https://doi.org/10.1039/B502142C
- 33. Love J.C., Estroff L.A., Kriebel J.K. et al. // Chem. Rev. 2005. V. 105. P. 1103. https://doi.org/10.1021/cr0300789
- 34. Zeng H., Du X.W., Singh S.C. et al. // Adv. Funct. Mater. 2012. V. 22. P. 1333. https://doi.org/10.1002/adfm.201102295
- 35. Lyon J.L., Fleming D.A., Stone M.B. et al. // Nano Lett. 2004. V. 4. № 4. P. 719. https://doi.org/10.1021/nl035253f
- 36. Chen W., Cai W., Zhang L. et al. // J. Colloid Interface Sci. 2001. V. 238. № 2. P. 291. https://doi.org/10.1006/jcis.2001.7525
- 37. Geethalakshmi R., Sarada D.V. // Int. J. Nanomed. 2012. V. 7. P. 5375. https://doi.org/10.2147/IJN.S36516
- 38. Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // J. Alloys Compd. 2022. V. 910. 164922. https://doi.org/10.1016/j.jallcom.2022.164922
- 39. Рашидова С.Ш., Вохидова Н.Р., Алексеева О.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1851. https://doi.org/10.31857/S0044457X22601146
- 40. Агафонов А.В., Сироткин Н.А., Титов В.А. и др.// Журн. неорган. химии. 2022. Т. 67. № 3. С. 271. https://doi.org/10.31857/S0044457X22030023
- 41. Vasil’kov A., Dovnar R., Smotryn S. et al. // Antibiotics. 2018. V. 7. P. 80. https://doi.org/10.3390/antibiotics7030080
- 42. Abd-Elsalam K.A., Alghuthaymi M.A., Shami A. et al. // J. Fungi. 2020. V. 6. P. 112. https://doi.org/10.3390/jof6030112
- 43. Cardenas-Trivino G., Cruzat-Contreras C. // J. Cluster Sci. 2018. V. 29. P. 1081. https://doi.org/10.1007/s10876-018-1419-x
- 44. Vasil’kov A., Rubina M., Naumkin A. et al. // Gels 2021. V. 7. P. 1. https://doi.org/10.3390/gels7030082
- 45. Sztandera K., Gorzkiewicz M., Klajnert-Maculewicz B. // Mol. Pharmaceutics. 2019. V. 16. № 1. P. 1. https://doi.org/10.1021/acs.molpharmaceut.8b00810
- 46. Miri A., Najafzadeh H., Darroudi M. et al. // Chem. Open. 2021. V. 10. P. 327. https://doi.org/10.1002/open.202000186
- 47. Vasil’kov A., Batsalova T., Dzhambazov B. et al. // Surf. Interface Anal. 2021. V. 53. P. 1. https://doi.org/10.1002/sia.7038
- 48. Vasil’kov A.Yu., Migulin D.A., Muzalevskiy V.M. et al. // Mend. Commun. 2022. V. 32. P. 478. https://doi.org/10.1016/j.mencom.2022.07.016
- 49. Belyakova O.A., Zubavichus Y.V., Neretin I.S. et al. // J. Alloys Comps. 2004. V. 382. P. 46. https://doi.org/10.1016/j.jallcom.2004.05.047
- 50. Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
- 51. Moulder J.F., Chastain J., King R.C. et al. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. PerkinElmer, Eden Prairie. 1995. 261 p.
- 52. Grosvenor A.P., Kobe B.A., Biesinger M.C. et al. // Surface and Interface Analysis. 2004. V. 36. № 12. P. 1564. https://doi.org/10.1002/sia.1984
- 53. Mansour A.N., Brizzolara R.A. // Surface Sci. Spectra. 1996. V. 4. P. 345. https://doi.org/10.1116/1.1247831
- 54. Anderson J.F., Kuhn M., Diebold U. // Surface Sci. Spectra. 1996. V. 4. P. 266. https://doi.org/10.1116/1.1247796
- 55. Tymoczko A., Kamp M., Prymak O. et al. // RSC Nanoscale. 2018. V. 10. P. 16434. https://doi.org/10.1039/C8NR03962C