- PII
- 10.31857/S0044457X2360007X-1
- DOI
- 10.31857/S0044457X2360007X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 6
- Pages
- 857-864
- Abstract
- A new method for manufacturing composites comprising graphene oxide (GO) and zinc borate nanopowders is described. The method comprises ultrasonic stirring of precursor slurries followed by removal of water. Exposure to supercritical isopropanol provides a composite comprising reduced graphene oxide (RGO) and zinc borate nanopowder due to removal of oxygen functions from the graphene oxide structure, thereby providing a uniform distribution of zinc borate particles over the surface of reduced graphene oxide.
- Keywords
- оксид графена восстановленный оксид графена борат цинка композиционный материал антипирен сверхкритический изопропанол
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Wang H., Yin P. // Case. Stud. Constr. Mater. 2023. V. 18. P. e01748. https://doi.org/10.1016/j.cscm.2022.e01748
- 2. Dong J., Li G., Gao J. et al. // Sci. Total. Environ. 2022. V. 848. P. 157695. https://doi.org/10.1016/j.scitotenv.2022.157695
- 3. Ling S., Lu C., Fu M. et al. // J. Clean. Prod. 2022. V. 373. P. 133970. https://doi.org/10.1016/j.jclepro.2022.133970
- 4. Chai K., Xu S. // Adv. Powder. Technol. 2022. V. 33. P. 103776. https://doi.org/10.1016/j.apt.2022.103776
- 5. Pan J., Wu M., Chu H. et al. // Macromol. Mater. Eng. 2022. V. 307. P. 2200259. https://doi.org/10.1002/mame.202200259
- 6. Zhang C., He H., Li Q. et al. // Polym. Int. V. 71. P. 1193. https://doi.org/10.1002/pi.6399
- 7. Miao Z., Yan D., Wang X. et al. // Chin. Chem. Lett. 2021. V. 33. P. 4026. https://doi.org/10.1016/j.cclet.2021.12.003
- 8. Ozyhar T., Tschannen C., Thoemen H. et al. // Fire. And. Materials. 2022. V. 46. P. 595. https://doi.org/10.1002/fam.3009
- 9. Tong C., Zhang S., Zhong T. et al. // Chem. Eng. J. 2021. V. 413. P. 129440. https://doi.org/10.1016/j.cej.2021.129440
- 10. Yang K., Li X. // Holzforschung. 2019. V. 73. P. 599. https://doi.org/10.1515/hf-2018-0167
- 11. M. Zia-ul-Mustafa, Faiz A., Sami U. et al. // Prog. Org. Coat. 2017. V. 102. P. 201. https://doi.org/10.1016/j.porgcoat.2016.10.014
- 12. Guo L., Lv Z., Zhu T. et al. // Sci. Total. Environ. 2023. V. 858. P. 159746. https://doi.org/10.1016/j.scitotenv.2022.159746
- 13. Xu Z., Zhan J., Xu Z. et al. // Molecules. 2022. V. 27. P. 8783. https://doi.org/10.3390/molecules27248783
- 14. Liu J., Zeng L., Ai L. et al. // Vinyl. Addit. Technol. 2022. V. 28. P. 591. https://doi.org/10.1002/vnl.21909
- 15. Xu Y., Zhou R., Mu J. et al. // Colloids. Surf. A. Physicochem. Eng. Asp. 2022. V. 640. P. 128400. https://doi.org/10.1016/j.colsurfa.2022.128400
- 16. Atay H.Y., Celik E. // Polym. Compos. 2016. V. 24. P. 419. https://doi.org/10.1177/096739111602400605
- 17. Li Y., Hao Z., Cao H. et al. // Opt Laser Technol. 2023. V. 160. P. 109054. https://doi.org/10.1016/j.optlastec.2022.109054
- 18. Tu M., Jia L., Kong X. et al. // J. Colloid. Interface. Sci. 2023. V. 635. P. 105. https://doi.org/10.1016/j.jcis.2022.12.126
- 19. Sahoo S., Bhuyan M., Sahoo D. // J. Alloys Compd. 2023. V. 935. P. 168097. https://doi.org/10.1016/j.jallcom.2022.168097
- 20. Ma Q., Liu M., Cui F. et al. // Carbon. 2023. V. 204. P. 336. https://doi.org/10.1016/j.carbon.2022.12.066
- 21. Li J., Wu W., Duan R. et al. // Appl. Surf. Sci. 2023. V. 611. P. 155736. https://doi.org/10.1016/j.apsusc.2022.155736
- 22. Chen O., Liu L., Zhang A. et al. // Chem. Eng. J. 2023. V. 454. P. 140424. https://doi.org/10.1016/j.cej.2022.140424
- 23. Zheng H., Liu H., Duan H. // Mater. Lett. 2023. V. 330. P. 133351. https://doi.org/10.1016/j.matlet.2022.133351
- 24. Yang F., Zhao H., Wang Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2022. V. 648. P. 129326. https://doi.org/10.1016/j.colsurfa.2022.129326
- 25. Chua C.K., Pumera M. // Chem. Soc. Rev. 2014. V. 43. P. 291. https://doi.org/10.1039/C3CS60303B
- 26. Agarwal V., Per B. Zetterlund. // Chem. Eng. J. 2021. V. 405. P. 127018. https://doi.org/10.1016/j.cej.2020.127018
- 27. Koreshkova A.N., Gupta V., Peristyy A. et al. // Talanta. 2019. V. 205. P. 120081. https://doi.org/10.1016/j.talanta.2019.06.081
- 28. Sang B., Li Zw., Li Xh. et al. // J. Mater. Sci. 2016. V. 51. P. 8271. https://doi.org/10.1007/s10853-016-0124-0
- 29. Qian X., Song L., Yu B. et al. // J. Mater. Chem. A. 2013. V. 1. P. 6822. https://doi.org/10.1039/C3TA10416H
- 30. Pishch I.V., Rotman T.I., Romanenko Z.A. et al. // Glass. Ceram. 1987. V. 44. P.174. https://doi.org/10.1007/BF00701660
- 31. Rajpoot Y., Sharma V., Basak S. et al. // J. Nat. Fibers. 2022. V. 19. P. 5663. https://doi.org/10.1080/15440478.2021.1889431
- 32. Liu Z., Li Z., Zhao X. et al. // Polymers. 2018. V. 10. P. 625. https://doi.org/10.3390/polym10060625
- 33. Kozerozhets I.V., Avdeeva V.V., Buzanov G.A. et al. // Inorganics. 2022. V. 10. P. 212. https://doi.org/10.3390/inorganics10110212
- 34. Zhang Z., Wu W., Zhang M. et al. // Appl. Surf. Sci. 2017. V. 425. P. 896. https://doi.org/10.1016/j.apsusc.2017.07.101
- 35. Zuo L., Fan W., Zhang Y. et al. // Compos. Sci. Technol. 2017. V. 139. P. 57. https://doi.org/10.1016/j.compscitech.2016.12.008
- 36. Leng Q., Li J., Wang Y. // New J. Chem. 2020. V. 44. P. 4568. https://doi.org/10.1039/C9NJ06253J
- 37. Ioni Y.V., Chentsov S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
- 38. Yu P., Wang H., Bao R. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. P. 1557. https://doi.org/10.1021/acssuschemeng.6b02254
- 39. Eigler S., Dotzer C., Hof F. et al. // Chem. Eur. J. 2013. V. 19. P. 9490. https://doi.org/10.1002/chem.201300387
- 40. Aliyev E., Filiz V., Khan M.M. et al. // Nanomaterials. 2019. V. 9. P. 1180. https://doi.org/10.3390/nano9081180
- 41. Zheng Y., Qu Y., Tian Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2009. V. 349. P. 19. https://doi.org/10.1016/j.colsurfa.2009.07.039
- 42. López-Díaz D., López Holgado M., García-Fierro J. et al. // J. Phys. Chem. 2017. V. 121. P. 20489. https://doi.org/10.1021/acs.jpcc.7b06236
- 43. Perumbilavil S., Sankar P., T. Priya Rose T.P. et al. // Appl. Phys. Lett. 2015. V. 107. P. 051104. https://doi.org/10.1063/1.4928124
- 44. Farah S., Farkas A., Madarász J. et al. // J. Therm. Anal. Calorim. 2020. V. 142. P. 331. https://doi.org/10.1007/s10973-020-09719-3
- 45. Liu C., Wu W., Shi Y. et al. // Compos. B. Eng. 2020. V. 203. P. 108486. https://doi.org/10.1016/j.compositesb.2020.108486
- 46. Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 950. https://doi.org/10.1134/S0036023621060115
- 47. Tkachev S.V., Buslaeva E.Y., Naumkin A.V. et al. // J. Inorg. Mater. 2012. V. 48. P. 796. https://doi.org/10.1134/S0020168512080158
- 48. Ioni Y.V., Kraevsky S.V., Groshkova Y.A. et al. // Mendeleev Commun. 2021. V. 35. P. 718. https://doi.org/10.1016/j.mencom.2021.09.042
- 49. Ioni Y.V., Voronov V.V., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 709. https://doi.org/10.1134/S0036023615060066