RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis of Solid Solutions of Barium Fluoride with Rare Earth Element Fluorides and Study of Their Up-Conversion Properties

PII
10.31857/S0044457X22602371-1
DOI
10.31857/S0044457X22602371
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 8
Pages
1005-1010
Abstract
Solid solutions based on barium fluoride doped with rare earth element ions have been obtained by solid-phase synthesis. According to X-ray powder diffraction, the obtained samples have monophase fluorite structure. Increase in the concentration of rare earth element ions leads to decrease of crystal structure volume. Laser irradiation at 980 nm (radiation power of 1.2 W/cm2) produces luminescence in the visible spectral region. The presence of Yb3+ ion as sensitizer increases luminescence intensity for barium fluorides doped with Er3+ ions. Incorporation of Tm3+ ions into barium fluoride doped with Er3+ ions leads to decrease of total radiation intensity and the predominance of luminescence in the red spectral region. Color coordinates calculated from photoluminescence data by CIE 31 standard have been determined for the samples. The obtained materials of prescribed composition can transform infrared radiation into visible light.
Keywords
фторид бария фториды редкоземельных элементов люминофоры твердые растворы
Date of publication
01.08.2023
Year of publication
2023
Number of purchasers
0
Views
34

References

  1. 1. Auzel F. // Chem. Rev. 2004. V. 104. № 1. P. 139. https://doi.org/10.1021/cr020357g
  2. 2. Martı’n-Rodrı’guez R., Valiente R., Polizzi S. et al. // J. Phys. Chem. C. 2009. V. 113. № 28. P. 12195. https://doi.org/10.1021/jp901711g
  3. 3. Овсянкин В.В., Феофилов П.П. // Письма в ЖЭТФ. 1966. Т. 3. С. 494.
  4. 4. Emory M. Chan. // Chem. Soc. Rev. 2015. V. 44. P. 1653. https://doi.org/10.1039/C4CS00205A
  5. 5. Madirov E.I., Konyushkin V.A., Nakladov A.N. et al. // J. Mater. Chem. C. 2021. V. 9. P. 3493. https://doi.org/10.1039/d1tc00104c
  6. 6. Saleta Reig D., Grauel B., Konyushkin V.A. et al. // J. Mater. Chem. C. 2020.V. 8. P. 4093. https://doi.org/10.1039/C9TC06591A
  7. 7. Раджабов Е.А., Шендрик Р.Ю. // Оптика и спектроскопия. 2020. Т. 128. № 11. С. 1621. https://doi.org/10.21883/OS.2020.11.50164.10-20
  8. 8. Li T., Guo C.-F., Yang Y.-M. et al. // Acta Mater. 2013. V. 61. P. 7481. https://doi.org/10.1016/j.actamat.2013.08.060
  9. 9. Silva J.R., Gouveia-Neto A.S., Bueno L.A. // Nonlinear Freq. Gener. Convers. Mater. Devices. Appl. 2014. V. 8964. https://doi.org/10.1117/12.2036374
  10. 10. Liao J., Yang Z., Wu H. et al. // J. Mater. Chem. C. 2013. V. 1. P. 6541. https://doi.org/10.1039/c3tc30895b
  11. 11. Betina A.A., Bulatova T.S., Kolesnikov I.E. et al. // Russ. J. Gen. Chem. 2022. V. 92. P. 2832. https://doi.org/10.1134/S1070363222120349
  12. 12. Rafique R., Baek S.H., Phan L.M.T. et al. // Mater. Sci. Eng. C. 2019. V. 99. P. 1067. https://doi.org/10.1016/j.msec.2019.02.046
  13. 13. Gromak N.A., Kolokolov F.A., Dotsenko V.V. et al. // Russ. J. Gen. Chem. 2021. V. 91. P. 685. https://doi.org/10.1134/S1070363221040174
  14. 14. Zhao Y., Wang X., Zhang Y. et al. // J. Alloys Compd. 2020. V. 84. 154998. https://doi.org/10.1016/j.jallcom.2020.154998
  15. 15. Han X., Song E., Chen W. et al. // J. Mater. Chem. C. 2020. V. 8. P. 9836. https://doi.org/10.1039/D0TC01502D
  16. 16. Ушаков С.Н., Усламина М.А., Нищев К.Н. и др. // Оптика и спектроскопия. 2020. Т. 128. № 5. С. 607. https://doi.org/10.21883/OS.2020.05.49317.278-19
  17. 17. Cheng L., Cheng G., Dong R., Zhang X. // Adv. Mater. Res. 2011. V. 287. P. 490. https://doi.org/10.4028/www.scientific.net/AMR.287-290.490
  18. 18. Liu X., Aidilibike T., Guo J. // RSC Advances. 2017. V. 7. P. 14010. https://doi.org/10.1039/C7RA00071E
  19. 19. Karbowiak M., Cichos J. // J. Alloys Compd. 2016. P. 258. https://doi.org/10.1016/j.jallcom.2016.02.255
  20. 20. Yun X., Zhou J., Zhu Y. et al. // J Phys. Chem. Solids. 2022. V. 163. P. 110545. https://doi.org/10.1016/j.jpcs.2021.110545
  21. 21. Wang Z., Jiao H., Fu Z. // J. Lumin. 2019. V. 206. P. 273. https://doi.org/10.1016/j.jlumin.2018.10.034
  22. 22. Rivera V.A.G., Silva O.B., El-Amraoui M. et al. // Optical Components and Materials XII. 2015. V. 9359. P. 935913. https://doi.org/10.1117/12.2079344
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library