RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis of Fe-ZIF and Adsorption of Zinc and Copper Ions on Its Surface

PII
10.31857/S0044457X22602292-1
DOI
10.31857/S0044457X22602292
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 7
Pages
939-945
Abstract
A method for the synthesis of Fe(III)-based zeolite imidazolate framework at various metal to linker ratios was proposed. The resulting material was used as an adsorbent for zinc(II) and copper(II) ions. It was shown that the materials were composed of hexagonal particles and represented a microheterogeneous system with an average particle size of 0.05–0.1 μm. The isotherms of nitrogen adsorption in the pores of Fe-ZIF were measured. By processing of the isotherms, porous structure parameters for the samples were found. The adsorption of Cu2+ and Zn2+ ions from aqueous solutions at 298.15 K was studied and high degrees of metal extraction was demonstrated. The adsorption of copper and zinc ions was spontaneous in all cases. The highest coverages of the surface active sites were 0.96 and 0.71 for copper and zinc, respectively. The adsorption in the bulk of energetically homogeneous porous adsorbent and predominance of micropores in iron(III) 2-ethylimidazolate structure were established.
Keywords
металлоорганические каркасные структуры удельная поверхность адсорбция цеолитные имидазолатные каркасы сорбционная емкость степень извлечения ионы тяжелых металлов
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Bhattacharjee S., Jang M.-S., Kwon H.-J. // Catal. Surv. Asia. 2014. V. 18. P. 101. https://doi.org/10.1007/s10563-014-9169-8
  2. 2. Evans J.D., Garai B., Reinsch H et al. // Coord. Chem. Rev. 2019. V. 380. P. 378. https://doi.org/10.1016/j.ccr.2018.10.002
  3. 3. Zhu Q.L., Xu Q. // Chem. Soc. Rev. 2014. V. 43. P. 5468. https://doi.org/10.1039/C3CS60472A
  4. 4. Phan A.N.H., Doonan C.J., Uribe-Romo F.J. et al. // Acc. Chem. Res. 2010. V. 1. P. 58. https://doi.org/10.1021/ar900116g
  5. 5. Xianbin Liu, Tiantian Liang, Rongtao Zhang et al. // ACS Appl. Mater. Interfaces. 2020. V. 13. P. 9643. https://doi.org/10.1021/acsami.0c21486
  6. 6. Voronina A.A., Tarasyuk I.A., Marfin Y.S. et al. // J. Non-Cryst. Solids. 2014. V. 406. P. 5. https://doi.org/10.1016/j.jnoncrysol.2014.09.009
  7. 7. Tarasyuk I.A., Kuzmin I.A., Marfin Y.S. et al. // Synth. Met. 2016. V. 217. P. 189. https://doi.org/10.1016/j.synthmet.2016.03.037
  8. 8. Vashurin A., Marfin Y., Tarasyuk I. et al. // Appl. Organomet. Chem. 2018. V. 32. https://doi.org/10.1002/aoc.4482
  9. 9. Konnerth H., Matsagar B.M., Chen S.S. et al. // Coord. Chem. Rev. 2020. V. 416. https://doi.org/10.1016/j.ccr.2020.213319
  10. 10. Sharanyakanth P.S., Mahendran R. // Trends Food Sci. Technol. 2020. V. 104. P. 102. https://doi.org/10.1016/j.tifs.2020.08.004
  11. 11. Jie Yang, Ying-Wei Yang // Small. 2020. V. 16. https://doi.org/10.1002/smll.201906846
  12. 12. Фуфаева В.А., Филиппов Д.В. // Изв. вузов. Химия и хим. технология. 2021. Т. 64. С. 24. https://doi.org/10.6060/ivkkt.20216405.6354
  13. 13. Xu G.-R., An Z.-H., Xu K. et al. // Coord. Chem. Rev. 2021. V. 427. P. 213554. https://doi.org/10.1016/j.ccr.2020.213554
  14. 14. Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1326.
  15. 15. Rasheed T., Ahmad A., Bilal M. et al. // Chemosphere. 2020. V. 259. P. 127369.https://doi.org/10.1016/j.chemosphere.2020.127369
  16. 16. Yajie Chen, Xue Bai, Zhengfang Ye. // Nanomaterials. V. 10. P. 1481. https://doi.org/10.3390/nano10081481
  17. 17. Филиппов Д.В., Фуфаева В.А., Шепелев М.В. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 397. https://doi.org/10.31857/S0044457X22030084
  18. 18. Rasheed T., Ahmad A., Bilal M. et al. // Chemosphere. 2020. V. 259. P. 127369. https://doi.org/10.1016/j.chemosphere.2020.127369
  19. 19. Abdi J., Abedini H. // Chem. Eng. J. 2020. V. 400. P. 125862. https://doi.org/10.1016/j.cej.2020.125862
  20. 20. Shen B., Wang B., Zhu L. et al. // Nanomaterials. 2020. V. 10. P. 1636. https://doi.org/10.3390/nano10091636
  21. 21. Begum J., Hussain Z., Noor T. // Mater. Res. Express. 2020. V. 7. P. 015083. https://doi.org/10.1088/2053-1591/ab6b66
  22. 22. Manousi N., Giannakoudakis D.A., Rosenberg E. et al. // Molecules. 2019. V. 24. P. 4605. https://doi.org/10.3390/molecules24244605
  23. 23. Hidalgo T., Simón-Vázquez R., González-Fernández A., Horcajada P. // Chem. Sci. 2022. V. 13. P. 934. https://doi.org/10.1039/D1SC04112F
  24. 24. Zhang Y., Jia Y., Li M., Hou L. // Sci. Rep. 2018. V. 8. P. 1. https://doi.org/10.1038/s41598-018-28015-7
  25. 25. Lashgari M., Yamini Y. // Talanta. 2019. V. 191. P. 283.
  26. 26. Rasheed T., Ahmad A., Bilal M. et al. // Chemosphere. 2020. V. 259. P. 127369. https://doi.org/10.1016/j.chemosphere.2020.127369
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library