- PII
- 10.31857/S0044457X22602280-1
- DOI
- 10.31857/S0044457X22602280
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 7
- Pages
- 913-922
- Abstract
- Orthoborates La0.95–хEu0.05SmхBO3 and metaborates La0.95 – хEu0.05Smх(BO2)3 (х = 0.025, 0.05, 0.075, 0.1) have been obtained under optimal conditions by extraction-pyrolytic method at lower temperature and shorter time as compared with the known methods. Increase in Sm3+ ion concentration leads to decrease of unit cell volume in La0.95 – хEu0.05SmхBO3 (aragonite structural type) and La0.95 – хEu0.05Smх(BO2)3 (monoclinic modification of α type). The larges changes in luminescence excitation spectra of the compounds depending on Sm3+ concentration is observed in 360–450 nm region, which includes the bands of transitions for both Eu3+ and Sm3+ ions. On luminescence excitation in the band of maximal absorption of Sm3+ ion (λeх = 404 nm), luminescence intensity of cooperatively doped La0.925Eu0.05Sm0.025(BO2)3 and La0.925Eu0.05Sm0.025BO3 increases, which can be explained by the possibility of efficient transfer of absorbed energy from Sm3+ to Eu3+ ion.
- Keywords
- экстракционно-пиролитический метод бораты лантана допирование самарием и европием люминесценция
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Wei H.W., Shao L.M., Jiao H. // Opt. Mater. 2018. V. 75. P. 442. https://doi.org/10.1016/j.optmat.2017.10.011
- 2. Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2022. Т. 64. № 1. С. 105.
- 3. Halefoglu Y.Z. // Appl. Radiat. Isotopes. 2019. V. 148. № 1. P. 40. https://doi.org/10.1016/j.apradiso.2019.03.011
- 4. Yang R., Sun X., Jiang P. et al. // J. Solid State Chem. 2018. V. 258. P. 212. https://doi.org/10.1016/j.jssc.2017.10.022
- 5. Beihoucif R., Velazquez M., Platevin O. et al. // Opt. Mater. 2017. V. 73. P. 658. https://doi.org/10.1016/j.optmat.2017.09.026
- 6. Xu Y.W., Chen J., Zhang H. et al. // J. Mater. Chem. 2020. V. 8. P. 247. https://doi.org/10.1039/c9tc05311e
- 7. Ma C., Li X., Zhang M. et al. // Ceram. Int. 2018. V. 44. № 15. P. 18462. https://doi.org/10.1016/j.ceramint.2018.07.064
- 8. Omanwar S.K., Sawala. N.S. // Appl. Phys. A. 2017. V. 123. № 11. P. 673. https://doi.org/10.1007/s00339-017-1268-8
- 9. Yang R., Qi Y., Gao Y. et al. // J. Lumin. 2020. V. 219. P. 116880. https://doi.org/10.1016/j.jlumin.2019.116880
- 10. Górny A., Sołtys M., Pisarska J. et al. // J. Rare Earths. 2019. V. 37. № 11. P. 1145. https://doi.org/10.1016/j.jre.2019.02.005
- 11. Gopi S., Jose S.K., Sreeja E. et al. // J. Lumin. 2017. V. 192. P. 1288. https://doi.org/10.1016/j.jlumin.2017.09.009
- 12. Steudel F., Ahrens B., Schweizer S. // J. Lumin. 2017. V. 181. P. 31. https://doi.org/10.1016/j.jlumin.2016.08.066
- 13. Soltys M., Pisarska J., Leśniak M. et al. // J. Mol. Struct. 2018. V. 1163. P. 418. https://doi.org/10.1016/j.molstruc.2018.03.021
- 14. GaoY., Jiang P., Gao W. et al. // J. Solid State Chem. 2019. V. 278. P. 120915. https://doi.org/10.1016/j.jssc.2019.120915
- 15. Zhu Q., Fan Z., Li S. et al. // J. Asian Ceram. Soc. 2020. V. 8. № 2. P. 542. https://doi.org/10.1080/21870764.2020.1761084
- 16. Abaci O.G.H., Esenturk O., Yılmaz A. et al. // Opt. Mater. 2019. V. 98. P. 109487. https://doi.org/10.1016/j.optmat.2019.109487
- 17. Zhang J., Yang M., Jin H. et al. // Mater. Res. Bull. 2012. V. 47. № 2. P. 247. https://doi.org/10.1016/j.materresbull.2011.11.015
- 18. Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2019. Т. 61. № 1. С. 123.
- 19. Холькин А.И., Патрушева Т.Н. // Хим. технология. 2015. Т. 16. № 10. С. 576.
- 20. Стеблевская Н.И., Медков М.А., Ярусова С.Б. Получение и свойства функциональных материалов на основе оксидов редкоземельных и редких металлов. Владивосток: ВГУЭС, 2021. 348 с.
- 21. Стеблевская Н.И., Белобелецая М.В., Медков М.А. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 440. https://doi.org/10.31857/S0044457X21040218
- 22. Стеблевская Н.И., Белобелецкая М.В., Медков М.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1134.
- 23. Szczeszak A., Kubasiewicz K., Lis S. // Opt. Mater. 2013. V. 35. № 6. P. 1297. https://doi.org/10.1016/j.optmat.2013.02.001
- 24. Sohn Y. // Ceram. Int. 2014. V. 40. № 1. Part B. P. 2467.
- 25. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A. Theory and Applications in Inorganic Chemistry. N.Y.: John Wiley and Sons, 2009.
- 26. Blasse G, Grabmaier B.C. Luminescent materials. Berlin–Heidelberg: Springer-Verlag., 1994. 233 p.