RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Protolytic and Complexing Properties of Isomeric N-(Pyridylethyl)taurines

PII
10.31857/S0044457X22602218-1
DOI
10.31857/S0044457X22602218
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 8
Pages
1059-1065
Abstract
New N-derivatives of taurine, N-[2-(2-pyridyl)ethyl]taurine (HL1) and N-[2-(4-pyridyl)ethyl]taurine (HL2) have been synthesized. Using the method of alkalimetric titration of aqueous solutions with pH potentiometric indication at I = 0.1 mol/L (KCl/KNO3) and T = 25 ± 1°C, the acid dissociation constants of functional groups in the composition of reagents have been determined (HL1: pKa0 = 3.80 ± 0.03, pKa1 = 8.67 ± 0.02, HL2: pKa0 = 4.80 ± 0.05, pKa1 = 8.18 ± 0.04). It has been found that reagent HL1 is more resistant to the degradation process. The complexation of transition and alkaline earth metal ions with НL1 has been studied. It has been shown that the introduction of a 2-(2-pyridyl)ethyl substituent into the structure of taurine leads to a significant increase in the stability (Δ log β ≥ 1) of copper(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and silver(I) complexes with НL1. Calcium(II), magnesium(II), strontium(II), and barium(II) complexes with HL1 are characterized by a slight increase in stability (Δ lg β < 1) compared to taurine. Based on the data obtained, the structure of the studied complexes have been assumed.
Keywords
таурин катионы 3<i>d</i>-металлов катионы металлов IIA группы комплексообразование pH‑потенциометрия
Date of publication
01.08.2023
Year of publication
2023
Number of purchasers
0
Views
69

References

  1. 1. Киселев Ю.М. Химия координационных соединений. М.: Юрайт, 2021.
  2. 2. Маджидов Т.И., Баскин И.И., Антипин И.С. и др. Введение в хемоинформатику: Компьютерное представление химических структур. Казань: Казан. ун-т, 2020.
  3. 3. Samadi M., Haghi-Aminjan H., Sattari M. et al. // Life Sci. 2021. V. 265. P. 118813. https://doi.org/10.1016/j.lfs.2020.118813
  4. 4. Sedaghat M., Choobineh S., Ravasi A.A. // Life Sci. 2020. V. 258. P. 118225. https://doi.org/10.1016/j.lfs.2020.118225
  5. 5. Good N.E., Winget G.D., Winter W. et al. // Biochemistry. 1966. V. 5. № 2. P. 467. https://doi.org/10.1021/bi00866a011
  6. 6. Sankova M.V., Kytko O.V., Meylanova R.D. et al. // Res. Results Pharmacol. 2020. V. 6. № 4. P. 65. https://doi.org/10.3897/rrpharmacology.6.59407
  7. 7. Gurevich K.G., Urakov A.L., Bashirova L.I. et al. // Asian J. Pharm. Clin. Res. 2018. V. 11. № 11. P. 452. https://doi.org/10.22159/ajpcr.2018.v11i11.29049
  8. 8. Liberal Â., Pinela J., Vívar-Quintana A.M. et al. // Foods. 2020. V. 9. № 12. P. 1871. https://doi.org/10.3390/foods9121871
  9. 9. Zemlyakova E.O., Pestov A.V., Slepukhin P.A. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 11. P. 667. https://doi.org/10.1134/S107032841811009X
  10. 10. Машковский М.Д. Лекарственные средства. М.: РИА “Новая волна”, 2008.
  11. 11. Lakiza N.V., Tissen O.I., Neudachina L.K. et al. // Russ. J. Appl. Chem. 2013. V. 86. № 9. P. 1383. https://doi.org/10.1134/S1070427213090114
  12. 12. Pestov A.V., Bratskaya S.Yu., Azarova Yu.A. et al. // Russ. J. Appl. Chem. 2011. V. 84. № 4. P. 713. https://doi.org/10.1134/S1070427211040276
  13. 13. Pestov A.V., Lakiza N.V., Tissen O.I. et al. // Russ. Chem. Bull. 2014. V. 63. № 3. P. 754. https://doi.org/10.1007/s11172-014-0503-0
  14. 14. ГOCT 10398-2016
  15. 15. Solov’ev V.P., Baulin V.E., Strakhova N.N. et al. // J. Chem. Soc. 1998. № 6. P. 1489. https://doi.org/10.1039/a708245b
  16. 16. Solov’ev V.P., Tsivadze A.Yu. // Prot. Met. Phys. Chem. Surf. 2015. V. 51. № 1. P. 1. https://doi.org/10.1134/S2070205115010153
  17. 17. Irving H., Williams R.J.P. // J. Chem. Soc. 1953. P. 3192. https://doi.org/10.1039/jr9530003192
  18. 18. Умланд Ф., Янсен А., Тириг Д. и др. Комплексные соединения в аналитической химии. М.: Мир, 1975.
  19. 19. Pearson R.G. // J. Am. Chem. Soc. 1963. V. 85. № 22. P. 3533. https://doi.org/10.1021/ja00905a001
  20. 20. Petrova Yu.S., Neudachina L.K. // Russ. J. Inorg. Chem. 2013. V. 58. № 5. P. 617. https://doi.org/10.1134/S0036023613050173
  21. 21. Jiang Y.-M., Cai J.-H., Liu Z.-M. et al. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2005. V. 61. № 5. P. M878. https://doi.org/10.1107/S1600536805010846
  22. 22. Du Z.-X., Qin J.-H., Wang J.-G. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2008. V. 64. № 2. P. M341. https://doi.org/10.1107/S1600536808000779
  23. 23. Liao B.-L., Li J.-X., Jiang Y.-M. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2007. V. 63. № 7. P. M1974. https://doi.org/10.1107/S1600536807029911
  24. 24. NIST Critically Selected Stability Constants of Metal Complexes. 2004. Version 8.0.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library