- PII
- 10.31857/S0044457X22602048-1
- DOI
- 10.31857/S0044457X22602048
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 4
- Pages
- 452-462
- Abstract
- Ca1 – 2xBi2xMo1 – xGexO4 solid solutions with a scheelite-like structure (space group I41/a) and the homogeneity range х = 0.0–0.4 were prepared using standard ceramic technology. The unit cell parameter с and unit cell volume increase as the dopant concentration increases due to the changing size of Ca/BiO8 polyhedra. The predominant thermal expansion of Ca/BiO8 polyhedra was inferred from the temperature-dependent unit cell parameters and Raman spectral patterns. The Ca/Bi–O and Mo/Ge–O bond lengths were calculated. The increasing dopant concentration decreases the thermal expansion coefficient of the ceramics and increases the electrical conductivity and activation energy of the complex oxides compared to the matrix compound. The effective oxygen diffusion coefficient is determined.
- Keywords
- синтез шеелит высокотемпературная рентгенография тензор термическое расширение
- Date of publication
- 01.04.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 43
References
- 1. Kato H., Matsudo N., Kudo A. // Chem. Lett. 2004. V. 33. № 9. P. 1216. https://doi.org/10.1246/cl.2004.1216
- 2. Ramarao S.D., Roopas Kiran S., Murthy V.R.K. // Mater. Res. Bull. 2014. V. 56. P. 71. https://doi.org/10.1016/j.materresbull.2014.04.064
- 3. Choi G.-K., Kim J., Yoon S.H. et al. // J. Eur. Ceram. Soc. 2007. V. 27. № 1. P. 3063. https://doi.org/10.1016/j.jeurceramsoc.2006.11.037
- 4. Mikhailik V.B., Kraus H., Miller G. et al. // J. Appl. Phys. 2005. V. 97. № 8. P. 083523. https://doi.org/10.1063/1.1872198
- 5. Maji B.K., Jena H., Asuvathraman R. et al. // J. Alloys Compd. 2015. V. 640. P. 475. https://doi.org/10.1016/j.jallcom.2015.04.054
- 6. Petrov A., Kofstad P. // J. Solid State Chem. 1979. V. 30. P. 83. https://doi.org/10.1016/0022-4596 (79)90133-6
- 7. Im H.-N., Choi M.-B., Jeon S.-Y. et al. // Ceram. Int. 2011. V. 37. P. 49. https://doi.org/10.1016/j.ceramint.2010.08.004
- 8. Cheng J., Liu Ch., Cao W. et al. // Mater. Res. Bull. 2011. V. 46. P. 185. https://doi.org/10.1016/j.materresbull.2010.11.019
- 9. Arora S.K., Godbole R.S., Lakshminarayana D. // J. Mater. Sci. 1983. V. 18. P. 1359. https://doi.org/10.1007/BF01111955
- 10. Cheng J., Bao W., Han Ch. et al. // J. Power Sources. 2010. V. 195. P. 1849. https://doi.org/10.1016/j.jpowsour.2009.10.017
- 11. Cheng J., He J. // Mater. Lett. 2017. V. 209. P. 525. https://doi.org/10.1016/j.matlet.2017.08.094
- 12. Esaka T. // Solid State Ionics. 2000. V. 136–137. P. 1. https://doi.org/10.1016/S0167-2738 (00)00377-5
- 13. Bollmann W. // Cryst. Res. Technol. 1978. V. 18. № 8. P. 100. https://doi.org/10.1002/crat.19780130816
- 14. Rigdon M.A., Grace R.E. // J. Am. Ceram. Soc. 1973. V. 56. № 9. P. 475. https://doi.org/10.1111/j.1151-2916.1973.tb12527.x
- 15. Guo H.-H., Zhou D., Pang L.-X. et al. // J. Eur. Ceram. Soc. 2019. V. 39. P. 2365. https://doi.org/10.1016/j.jeurceramsoc.2019.02.010
- 16. Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al. // Chim. Techno Acta. 2021. V. 8. № 2. P. 20218204. https://doi.org/10.15826/chimtech.2021.8.2.04
- 17. Мацкевич Н.И., Семерикова А.Н., Гельфонд Н.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 5. С. 669. https://doi.org/10.31857/S0044457X20050165
- 18. Дергачева П.Е., Кульбакин И.В., Ашмарин А.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1126. https://doi.org/10.31857/S0044457X21080043
- 19. Каймиева О.С., Сабирова И.Э., Буянова Е.С. и др. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1211. https://doi.org/10.31857/S0044457X22090057
- 20. Емельянова Ю.В., Морозова М.В., Михайловская З.А. и др. // Электрохимия. 2009. Т. 45. № 4. С. 407.
- 21. Laugier J., Bochu B. LMGP-Suite of Programs for the interpretation of X-ray Experiments/ENSP. Grenoble: Lab. Materiaux Genie Phys, 2003.
- 22. Бубнова Р.С., Фирсова В.А., Филатов С.К. // Физика и химия стекла. 2013. Т. 39. № 3. С. 505.
- 23. Peercy P.S., Samara G.A. // Phys. Rev. B. 1973. V. 8. № 5. P. 2033. https://doi.org/10.1103/PHYSREVB.8.2033
- 24. Климова А.В., Михайловская З.А., Буянова Е.С. и др. // Электрохимия. 2021. Т. 57. № 8. С. 457. https://doi.org/10.31857/S0424857021080053
- 25. Achary S.N., Patwe S.J., Mathews M.D. et al. // J. Phys. Chem. Solids. 2006. V. 67. P. 774. https://doi.org/10.1016/j.jpcs.2005.11.009
- 26. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- 27. Zverev P.G. // Phys. Stat Solid C. 2004. V. 1. № 11. P. 3101. https://doi.org/10.1002/PSSC.200405413
- 28. Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al. // Chim. Techno Acta. 2022. V. 9. № 4. P. 20229410. https://doi.org/10.15826/chimtech.2022.9.4.10
- 29. Rietveld H.M. // J. Appl. Crystalogr. 1969. V. 2. P. 65. https://doi.org/10.1107/S0021889869006558
- 30. Mikhaylovskaya Z.A., Abrahams I., Petrova S.A. et al. // J. Solid State Chem. 2020. V. 291. P. 121627. https://doi.org/10.1016/j.jssc.2020.121627
- 31. Irvine J.T.S., Sinclair D.C., West A.R. // Adv. Mater. 1990. V. 2. № 3. P. 132. https://doi.org/10.1002/adma.19900020304
- 32. Abraham Y.B., Holzwarth N.A.W., Williams R.T. et al. // Phys. Rev. B. 2001. V. 64. № 24. P. 245109. https://doi.org/10.1103/PhysRevB.64.245109
- 33. Zhao H., Zhang F., Guo X. et al. // J. Phys. Chem. Solids. 2010. V. 71. P. 1639. https://doi.org/10.1016/j.jpcs.2010.08.013