RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

A Microstructural Study of the InSb〈Ni, Mn〉 alloy

PII
10.31857/S0044457X22601961-1
DOI
10.31857/S0044457X22601961
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 5
Pages
597-602
Abstract
The InSb + 1 at % Ni + 1 at % Mn alloy was studied by optical microscopy and scanning electron microscopy. A Heusler phase based on NiMnSb in the form of microinclusions on InSb dislocations was detected. The chemical composition of the microinclusions on dislocation pile-ups ranges from Ni1.1MnSb to Ni1.2MnSb, and that on individual dislocations is close to Ni1.1MnSb. However, the synthesis gives rise to bulk structural defects in the form of micropores and to elastic deformations around them, which are the main obstacles to the creation of a coherent material with unhindered movement of polarized electrons throughout the volume.
Keywords
магнитные полупроводники дислокации сегрегация примесей
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
37

References

  1. 1. Acet M., Manosa L., Planes A. // Handbook of Magnetic Materials. 2011. V. 19. P. 231. https://doi.org/10.1016/B978-0-444-53780-5.00004-1
  2. 2. Ril A.I., Marenkin S.F. // Russ. J. Inorg. Chem. 2022. V. 67. № 13. P. 2113. https://doi.org/10.1134/S0036023622601684
  3. 3. Еремеев С.В., Бакулин А.В., Кулькова С.Е. // ЖЭТФ. 2009. Т. 136. № 2. С. 393.
  4. 4. Еремеев С.В., Кульков С.С., Кулькова С.Е. // Физика твердого тела. 2008. Т. 50. № 2. С. 250.
  5. 5. Galanakis I., Lezaik M., Bihlmayer G., Blugel S. // Phys. Rev. B. 2005. V. 71. № 21. P. 214431. https://doi.org/10.1103/PhysRevB.71.214431
  6. 6. Wijs G.A., Groot R.A. // Phys. Rev. B. 2001. V. 64. P. 020402. https://doi.org/10.1103/PhysRevB.64.020402
  7. 7. Sozinov A., Likhachev A.A., Lanska N., Ullakko K. // Appl. Phys. Lett. 2002. V. 80. № 10. P. 1746. https://doi.org/10.1063/1.1458075
  8. 8. Khan M., Dubenko I., Stadler S., Ali N. // J. Phys.: Condens. Matter. 2008. V. 20. № 23. P. 235204. https://doi.org/10.1088/0953-8984/20/23/235204
  9. 9. Chatterjee S., Giri S., Majumdar S. et al. // J. Phys.: Condens. Matter. 2007. V. 19. № 34. P. 346213. https://doi.org/10.1088/0953-8984/19/34/346213
  10. 10. Krenke T., Duman E., Acet M. et al. // Nature Materials. 2005. T. 4. № 6. P. 450. https://doi.org/10.1038/nmat1395
  11. 11. Du J., Zheng Q., Ren W. J. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. № 18. P. 5523. https://doi.org/10.1088/0022-3727/40/18/001
  12. 12. Sutou Y., Imano Y., Koeda N. et al. // Appl. Phys. Lett. 2004. V. 85. № 19. P. 4358. https://doi.org/10.1063/1.1808879
  13. 13. Dubenko I., Pathak A., Stadler S. et al. // Phys. Rev. B. 2009. V. 80. P. 092408. https://doi.org/10.1103/PhysRevB.80.092408
  14. 14. Gardelis S., Androulakis J., Migiakis P. et al. // J. Appl. Phys. 2004. V. 95. № 12. P. 8063. https://doi.org/10.1063/1.1739293
  15. 15. Gardelis S., Androulakis J., Monnereau O. et al. // J. Phys.: Conference Series. Second Conference on Microelectronics, Microsystems and Nanotechnology. 2005. V. 10. P. 167. https://doi.org/10.1088/1742-6596/10/1/041
  16. 16. Wang F.F., Fukuhara T., Maezawa K. et al. // Jpn. J. Appl. Phys. 2010. V. 49. № 2. P. 25502. https://doi.org/10.1143/JJAP.49.025502
  17. 17. Groot R.F., Mueller F.M. // Phys. Rev. Lett. 1983. V. 50. № 25. P. 2024.
  18. 18. Ryba T., Vargova Z., Varga R. et al. // Acta Phys. Pol., A. 2014. V. 126. № 1. P. 206. https://doi.org/10.12693/APhysPolA.126.206
  19. 19. Ritchie L., Xiao G., Ji Y. et al. // Phys. Rev. B. 2003. V. 68. № 10. P. 104430. https://doi.org/10.1103/PhysRevB.68.104430
  20. 20. Новиков И.И. Теория термической обработки металлов. М.: Металлургия, 1978. 392 с.
  21. 21. Пашкова О.Н., Изотов А.Д., Саныгин В.П. и др. // Неорган. материалы. 2019. Т. 55. № 9. С. 941. https://doi.org/10.1134/S0002337X19090148
  22. 22. Пашкова О.Н., Саныгин В.П., Иванов В.А. и др. // Неорган. материалы. 2006. Т. 42. № 5. С. 519.
  23. 23. Саныгин В.П., Лобанов Н.Н., Изотов А.Д. и др. // Неорган. материалы. 2014. Т. 50. № 9. С. 968. https://doi.org/10.7868/S0002337X14090139
  24. 24. Кащенко Г.А. Основы металловедения. М.: Металлургиздат, 1950. 640 с.
  25. 25. Webster P.J., Mankikar R.M. // J. Magn. Magn. Mater. 1984. V. 42. № 3. P. 300. https://doi.org/10.1016/0304-8853 (84)90113-6
  26. 26. Физико-химические свойства полупроводниковых веществ. Справочник. М.: Наука, 1979.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library