RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

New Method for Preparation of Composite Based on Montmorillonite and Graphene Oxide

PII
10.31857/S0044457X2260195X-1
DOI
10.31857/S0044457X2260195X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
560-568
Abstract
A new method for preparation of a composite based on graphene oxide and montmorillonite has been proposed. A comparative characteristic of the adsorption rate for montmorillonite, graphene oxide, and a composite based on them is given. It is shown that the composite has the best adsorption properties with respect to methylene blue. The samples have been studied by IR and Raman spectroscopies, SEM, X-ray powder diffraction, and TGA/DTA. The resulting composite material can be widely used as sorbents for organic dyes in an aqueous medium and organic solvents.
Keywords
адсорбционная емкость композиционный материал
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
43

References

  1. 1. Luo P., Liu W., Zhu D. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2022. V. 655. № 130216. https://doi.org/10.1016/j.colsurfa.2022.130216
  2. 2. Alkenani A., Saleh T.A. // J. Mol. Liq. 2022. V. 367. № 120291. https://doi.org/10.1016/j.molliq.2022.120291
  3. 3. Mustafa B., Mehmood T., Wang Z. et al. // Chemosphere. 2022. V. 308. № 136333. https://doi.org/10.1016/j.chemosphere.2022.136333
  4. 4. Lakshmy K.S., Lal D., Nair A. et al. // Polymers. 2022. V. 14. № 1604. https://doi.org/10.3390/polym14081604
  5. 5. Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2022. V. 55. № 9. P. 929. https://doi.org/10.1134/S0020168519090139
  6. 6. Tarasova A.N. // J. Int. Pharm. Res. 2020. V. 12. P. 1169. https://doi.org/10.31838/ijpr/2020.SP2.142
  7. 7. Makisha N. // Membranes. 2022. V. 12. № 9. P. 819. https://doi.org/10.3390/membranes12090819
  8. 8. Kiselev A., Magaril E., Panepinto D. et al. // Sustainability. 2022. V. 13. № 12885. https://doi.org/10.3390/su132212885
  9. 9. Ali M.E.A., Shahat A., Ayoub T.I. et al. // Biointerface Res. Appl. Chem. 2022. V. 12. № 6. P. 7556. https://doi.org/10.33263/BRIAC126.75567572
  10. 10. Butusova O.A. // J. Int. Pharm. Res. 2020. V. 12. P. 1156. https://doi.org/10.31838/ijpr/2020.SP2.140
  11. 11. Raj S., Singh H., Bhattacharya J. // Sci. Total Environ. 2023. V. 857. № 159464. https://doi.org/10.1016/j.scitotenv.2022.159464
  12. 12. Chow M.K., Jee C.E., Yeap S.P. // Results in Engineering. 2022. V. 16. № 100682. https://doi.org/10.1016/j.rineng.2022.100682
  13. 13. Bulychev N.A. // Nanosci. Technol. 2021. V. 12. № 3. P. 91. https://doi.org/10.1615/NanoSciTechnolIntJ.2021038033
  14. 14. Memetova A., Tyagi I., Singh P. et al. // J. Clean. Prod. 2022. V. 379. № 134770. https://doi.org/10.1016/j.jclepro.2022.134770
  15. 15. Liu R., Gao S., Peng Q. et al. // Fuel. 2022. V. 330. № 125567. https://doi.org/10.1016/j.fuel.2022.125567
  16. 16. Jahan N., Roy H., Reaz A.H. et al. // J. Environ. Chem. Eng. 2022. V. 6. № 100239. https://doi.org/10.1016/j.cscee.2022.100239
  17. 17. Kozerozhets I., Panasyuk G., Semenov A. et al. // Powder Technol. 2023. V. 413. № 118030. https://doi.org/10.1016/j.powtec.2022.118030
  18. 18. Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2019. V. 55. № 9. P. 920. https://doi.org/10.1134/S0020168519090127
  19. 19. Senkina E.I., Buyakov A.S., Kazantsev S.O. et al. // Coatings. 2022. V. 12. № 1107. https://doi.org/10.3390/coatings12081107
  20. 20. Bakina O.V., Glazkova E.A., Lozhkomoev A.S. et al. // Cellulose. 2018. V. 25. № 8. P. 4487. https://doi.org/10.1007/s10570-018-1895-z
  21. 21. Zhang A., Liu J., Yang Y. et al. // Chem. Eng. J. 2023. V. 451. P. 138762. https://doi.org/10.1016/j.cej.2022.138762
  22. 22. Nkwoada A., Oyedika G., Oguzie E. et al. // Inorg. Chem. Commun. 2022. V. 143. P. 109768. https://doi.org/10.1016/j.inoche.2022.109768
  23. 23. Yang H., Li M., Pan L. et al. // Environ. Res. 2023. V. 216. № 114423. https://doi.org/10.1016/j.envres.2022.114423
  24. 24. Akpotu S.O., Diagboya P.N., Lawal I.A. et al. // Chem. Eng. J. 2023. V. 216. № 114423. https://doi.org/10.1016/j.cej.2022.139771
  25. 25. Nehra S., Dhillon A., Sharma R. et al. // Environ. Nanotechnol. Monit. Manag. 2022. V. 18. № 100690. https://doi.org/10.1016/j.enmm.2022.100690
  26. 26. Song J., Zhang S., Li G. et al // J. Hazard. Mater. 2020. V. 391. https://doi.org/10.1016/j.jhazmat.2019.121692
  27. 27. Molla A., Li Y., Mandal B. et al. // Appl. Surf. Sci. 2019. V. 464. P. 170. https://doi.org/10.1016/j.carbon.2019.10.003
  28. 28. Reynosa-Martínez A.C., Tovar G.N., Gallegos W.R. et al. // J. Hazard. Mater. 2020. V. 384. https://doi.org/10.1016/j.jhazmat.2019.121440
  29. 29. Ioni Y.V., Chentsov S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
  30. 30. Hummers W.S., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. P. 6. https://doi.org/10.1021/ja01539a017
  31. 31. Zhang X., Yi H., Bai H. et al. // RSC Advances. 2017. V. 7. № 66. P. 41471. https://doi.org/10.1039/c7ra07816a
  32. 32. Ioni Y.V., Groshkova Y.A., Gubin S.P. et al. // Nanotechnol. Russ. 2020. V. 15. P. 163. https://doi.org/10.1134/S1995078020020111
  33. 33. Yang Z., Yuan Z., Shang Z. et al. // Appl. Clay Sci. 2020. V. 197. P. 105781. https://doi.org/10.1016/j.clay.2020.105781
  34. 34. Kozerozhets I., Panasyuk G., Semenov E. et al. // Ceram. Int. 2022. V. 48. № 6. P. 7522. https://doi.org/10.1016/j.ceramint.2021.11.296
  35. 35. Kozerozhets I., Panasyuk G., Semenov E. et al. // Ceram. Int. 2020. V. 46. № 18. P. 28961. https://doi.org/10.1016/j.ceramint.2020.08.067
  36. 36. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1384. https://doi.org/10.1134/S0036023620090090
  37. 37. Block K.A., Trusiak A., Katz A. et al. // Appl. Clay Sci. 2015. V. 107. P. 173. https://doi.org/10.1016/j.clay.2015.01.021
  38. 38. Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 950. https://doi.org/10.1134/S0036023621060115
  39. 39. Yang S., Chen Q., Shi M. et al. // Nanomaterials. 2020. V. 10. № 4. P. 770. https://doi.org/10.3390/nano10040770
  40. 40. Danková Z., Mockovčiaková A., Dolinská S. // Desalination Water Treat. 2014. V. 52. P. 28. https://doi.org/10.1080/19443994.2013.814006
  41. 41. Kuzenkova A.S., Romanchuk A.Y., Trigub A.L. et al. // Carbon. 2019. https://doi.org/10.1016/j.carbon.2019.10.003
  42. 42. Yan H., Tao X., Yang Z. et al. // J. Hazard. Mater. 2014. V. 268. P. 191. https://doi.org/10.1016/j.jhazmat.2014.01.015
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library