RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Cobalt-Doped Chalcopyrites CuGaSe2: Synthesis and Magnetic Properties

PII
10.31857/S0044457X22601845-1
DOI
10.31857/S0044457X22601845
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
569-578
Abstract
Two series of cobalt-doped CuGa1 – xCoxSe2 and Cu1 – x/2Ga1 – x/2CoxSe2 chalcopyrites were prepared. Cobalt in part entered the chalcopyrite structure to ensure the appearance of paramagnetic properties, while in part it remained involved in cobalt selenide admixtures. High-temperature quenching forced almost all of the cobalt to enter the crystal structure in the Cu1 – x/2Ga1 – x/2CoxSe2 samples. Significant ferromagnetism appears in the Cu0.9Ga0.9Co0.2Se2 sample, which had the highest cobalt concentration, in particular at room temperature.
Keywords
халькопириты кобальт CuGaSe<sub>2</sub> магнитные свойства разбавленные магнитные полупроводники
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
49

References

  1. 1. Polman A., Knight M., Garnett E.C. et al. // Science. 2016. V. 352. № 6283. P. Aad4424. https://doi.org/10.1126/science.aad4424
  2. 2. Lee T.D., Ebong A.U. // Renew. Sustain. Energy Rev. 2017. V. 70. № September 2015. P. 1286. https://doi.org/10.1016/j.rser.2016.12.028
  3. 3. Regmi G., Ashok A., Chawla P. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. № 10. P. 7286. https://doi.org/10.1007/s10854-020-03338-2
  4. 4. Jaffe J.E., Zunger A. // Phys. Rev. B. 1983. V. 28. № 10. P. 5822. https://doi.org/10.1103/PhysRevB.28.5822
  5. 5. Shaukat A. // J. Phys. Chem. Solids. 1990. V. 51. № 12. P. 1413. https://doi.org/10.1016/0022-3697 (90)90024-A
  6. 6. Turcu M., Kötschau I.M., Rau U. // J. Appl. Phys. 2002. V. 91. № 3. P. 1391. https://doi.org/10.1063/1.1432126
  7. 7. Nakada T. // Electron. Mater. Lett. 2012. V. 8. № 2. P. 179. https://doi.org/10.1007/s13391-012-2034-x
  8. 8. Ohno H. // Science. 1998. V. 281. № 5379. P. 951. https://doi.org/10.1126/science.281.5379.951
  9. 9. Ohno H., Chiba D., Matsukura F. et al. // Nature. 2000. V. 408. № 6815. P. 944. https://doi.org/10.1038/35050040
  10. 10. Chiba D., Yamanouchi H., Hatsukura F. et al. // Science. 2003. V. 301. № 5635. P. 943. https://doi.org/10.1126/science.1086608
  11. 11. Yamanouchi M., Chiba D., Matsukura F. et al. // Nature. 2004. V. 428. № 6982. P. 539. https://doi.org/10.1038/nature02441
  12. 12. Ohno H. // Phys. B: Condens. Matter. 2006. V. 376–377. № 1. P. 19. https://doi.org/10.1016/j.physb.2005.12.007
  13. 13. Park Y.D., Hanbicki A.T., Erwin S.C. et al. // Science. 2002. V. 295. № 5555. P. 651. https://doi.org/10.1126/science.1066348
  14. 14. Dietl T., Ohno H., Matsukura F. // Phys. Rev. B. 2001. V. 63. № 19. P. 195205. https://doi.org/10.1103/PhysRevB.63.195205
  15. 15. Dietl T., Ohno H. // Rev. Mod. Phys. 2014. V. 86. № 1. P. 187. https://doi.org/10.1103/RevModPhys.86.187
  16. 16. Dietl T., Bonanni A., Ohno H. // J. Semicond. 2019. V. 40. № 8. P. 080301. https://doi.org/10.1088/1674-4926/40/8/080301
  17. 17. Zhao Y.J., Freeman A.J. // J. Magn. Magn. Mater. 2002. V. 246. № 1–2. P. 145. https://doi.org/10.1016/S0304-8853 (02)00042-2
  18. 18. Freeman A.J., Zhao Y.J. // J. Phys. Chem. Solids. 2003. V. 64. № 9–10. P. 1453. https://doi.org/10.1016/S0022-3697 (03)00120-3
  19. 19. Zhao Y.J., Zunger A. // Phys. Rev. B: Condens. Matter. Mater. Phys. 2004. V. 69. № 10. P. 1. https://doi.org/10.1103/PhysRevB.69.104422
  20. 20. Kamatani T., Akai H. // Mater. Sci. Semicond. Process. 2003. V. 6. № 5–6. P. 389. https://doi.org/10.1016/j.mssp.2003.08.005
  21. 21. Yao J., Kline C.N., Gu H. et al. // J. Solid. State. Chem. 2009. V. 182. № 9. P. 2579. https://doi.org/10.1016/j.jssc.2009.07.014
  22. 22. Зыкин М.А., Бушева Е.В., Аминов Т.Г. и др. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 168. https://doi.org/10.31857/S0044457X22020180
  23. 23. Зыкин М.А., Ефимов Н.Н. // Неорган. материалы. 2022. Т. 58. № 1. С. 21. https://doi.org/10.31857/S0002337X22010158
  24. 24. Зыкин М.А., Ефимов Н.Н. // Изв. АН Сер. хим. 2022. № 4. P. 701.
  25. 25. Lide D.R. (ed.) // CRC Handbook of Chemistry and Physics. 84th ed. CRC Press, 2003.
  26. 26. Teruya A., Suzuki F., Aoki D. et al. // J. Phys. Conf. Ser. 2017. V. 807. № 1. P. 012001. https://doi.org/10.1088/1742-6596/807/1/012001
  27. 27. Umeyama N., Tokumoto M., Yagi S. et al. // Jpn. J. Appl. Phys. 2012. V. 51. № 5. Part 1. P. 053001. https://doi.org/10.1143/JJAP.51.053001
  28. 28. García-García F.J., Larsson A.-K., Norèn L. et al. // Solid State Sci. 2004. V. 6. № 7. P. 725. https://doi.org/10.1016/j.solidstatesciences.2004.03.030
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library