RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Rare-Earth Nitrate Complexes with Dimethylformamide

PII
10.31857/S0044457X22601821-1
DOI
10.31857/S0044457X22601821
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
482-491
Abstract
In the rare-earth element nitrate (REE)–dimethylformamide (DMF)–water systems, which can be used to obtain nanosized REE oxides by solution combustion synthesis (SCS), the formation of coordination compounds [M(H2O)3(DMF)(NO3)3]·H2O (M = La–Pr) and [M(DMF)3(NO3)3] (M = Sm–Lu, Y) has been found. Using physicochemical methods of analysis (IR spectroscopy, X-ray powder diffraction, single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, and differential scanning calorimetry), their composition has been determined and structural features have been established; thermolysis processes have been studied in a wide temperature range. It is shown that the final products of the decomposition of complex compounds are oxides of rare earth elements.
Keywords
лантаниды амиды SCS-метод оксиды редкоземельных элементов
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Concise Encyclopedia of Self-Propagating High-Temperature Synthesis / Eds. Borovinskaya I.P., Gromov A.A., Levashov E.A. et al. Amsterdam: Elsevier, 2017.
  2. 2. Varma A., Mukasyan A.S., Rogachev A.S., Manu-kyan K.V. // Chem. Rev. 2016. V. 116. № 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  3. 3. Mukasyan A.S., Epstein P., Dinka P. // Proc. Combust. Inst. 2007. V. 31. № 2. P. 1789. https://doi.org/10.1016/j.proci.2006.07.052
  4. 4. Ghosh S.K., Patra S.N., Roy S.K. et al. // Ratio. 2008. V. 1. № 2. P. 130.
  5. 5. Kumar A., Wolf E.E., Mukasyan A.S. // Alche J. 2011. V. 57. № 12. P. 3473. https://doi.org/10.1002/aic.12537
  6. 6. Christy A.J., Umadevi M. // Mater. Res. Bull. 2013. V. 48. № 10. P. 4248. https://doi.org/10.1016/j.materresbull.2013.06.072
  7. 7. Cross A., Roslyakov S., Manukyan K.V. et al. // J. Phys. Chem. 2014. V. 118. № 45. P. 26191. https://doi.org/10.1021/jp508546n
  8. 8. Khaliullin Sh.M., Zhuravlev V.D., Russkikh O.V. et al. // Int. J. Self-Propag. High-Temp. Synth. 2015. V. 24. № 2. P. 83. https://doi.org/10.3103/S106138621502003X
  9. 9. Zhu Z., Zhang Y., Zhang Y. et al. // Materials. 2019. V. 12. № 6. P. 896. https://doi.org/10.3390/ma12060896
  10. 10. Sahu R.K., Ray A.K., Das S.K. et al. // J. Mater. Res. 2006. V. 21. № 7. P. 1664. https://doi.org/10.1557/jmr.2006.0211
  11. 11. Savinkina E.V., Karavaev I.A., Grigoriev M.S. et al. // Inorg. Chim. Acta. 2022. V. 532. P. 120759. https://doi.org/10.1016/j.ica.2021.120759
  12. 12. Abu-Zied B.M. // Appl. Surf. Sci. 2019. V. 471. P. 246. https://doi.org/10.1016/j.apsusc.2018.12.007
  13. 13. Kingsley J.J., Manickam N., Patil K.C. // Bull. Mater. Sci. 1990. V. 13. № 3. P. 179. https://doi.org/10.1007/BF02744944
  14. 14. Pathan A.A., Desai K.R., Vajapara S., Bhasin C.P. // Adv. Nanopart. 2018. V. 7. № 1. P. 28. https://doi.org/10.4236/anp.2018.71003
  15. 15. Pathan A.A., Desai K.R., Bhasin C. // Int. J. Nano. Chem. 2017. V. 3. P. 21. https://doi.org/10.18576/ijnc/030201
  16. 16. Deshpande K., Mukasyan A., Varma A. // Chem. Mater. 2004. V. 16. № 16. P. 4896. https://doi.org/10.1021/cm040061m
  17. 17. Bai J., Meng F., Wei C. et al. // Ceram. Silik. 2011. V. 55. № 1. P. 20.
  18. 18. Mukasyan A.S., Dinka P. // Int. J. Self-Propag. High-Temp. Synth. 2007. V. 16. № 1. P. 23. https://doi.org/10.3103/S1061386207010049
  19. 19. Voskanyan A.A., Chan K.Y. // J. Exp. Nanosci. 2015. V. 6. № 6. P. 466. https://doi.org/10.1080/17458080.2013.843028
  20. 20. Krishnamurthy S.S., Soundararajan S. // J. Inorg. Nucl. Chem. 1966. V. 28. № 8. P. 1689. https://doi.org/10.1016/0022-1902 (66)80071-4
  21. 21. Dao C.N., Rudert R., Luger P. et al. // Acta Crystallogr. 1992. V. C48. № 8. P. 449. https://doi.org/10.1107/S0108270191009939
  22. 22. Krishnamurthy S.S., Soundararajan S. // Can. J. Chem. 1969. V. 47. № 6. P. 995. https://doi.org/10.1139/v69-157
  23. 23. Hoch C. // Z. Kristallogr. Cryst. Mater. 2020. V. 235. № 8–9. P. 401. https://doi.org/10.1515/zkri-2020-0071
  24. 24. Sheldrick G.M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
  25. 25. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  26. 26. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  27. 27. Накамото К. // ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
  28. 28. Hay B.P., Hancock R.D. // Coord. Chem. Rev. 2001. V. 21. № 1. P. 61. https://doi.org/10.1016/S0010-8545 (00)00366-0
  29. 29. Hay B.P., Clement O., Sandrone G., Dixon D.A. // Inorg. Chem. 1998. V. 37. № 22. P. 5887. https://doi.org/10.1021/ic980641j
  30. 30. Hansen P.E. // Molecules. 2021. V. 26. № 9. P. 2409. https://doi.org/10.3390/molecules26092409
  31. 31. Shi X., Bao W. // Front. Chem. 2021. V. 9. P. 723718. https://doi.org/10.3389/fchem.2021.723718
  32. 32. Рукк Н.С., Шамсиев Р.С., Альбов Д.В., Мудрецова С.Н. // Тонкие химические технологии. 2021. Т. 16. № 2. С. 113. https://doi.org/10.32362/2410-6593-2021-16-2-113-124
  33. 33. Savinkina E.V., Karavaev I.A., Grigoriev M.S. // Polyhedron. 2020. V. 192. P. 114875. https://doi.org/10.1016/j.poly.2020.114875
  34. 34. Караваев И.А., Савинкина Е.В., Григорьев М.С. и др. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1080.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library