RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Estimation of the Standard Enthalpy of Formation of Crystalline Alkali Metal Borates

PII
10.31857/S0044457X22601808-1
DOI
10.31857/S0044457X22601808
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 3
Pages
325-332
Abstract
A structure–property correlation has been developed, which makes it possible to choose the optimal values of the enthalpy of formation of alkali metal borates, for which, according to the data of various experimental works and reference publications, wide variations are observed. Using this correlation, the enthalpy of formation of unstudied alkali metal borates can be reasonably estimated. It has been found that the contribution of B2O3 to the enthalpy of formation is the same not only for alkali metal borates but also for Ba, Ca, and Pb borates, for whose enthalpy of formation a structure–property correlation has also been established. This suggests the suitability of the obtained correlations for estimating the enthalpy of formation in the borate series, where the value is known only for one member of the series, as well as the possibility of estimating the enthalpy of formation of mixed borates of different metals.
Keywords
энтальпия образования оценка термодинамических свойств оксидные инкременты
Date of publication
01.03.2023
Year of publication
2023
Number of purchasers
0
Views
45

References

  1. 1. Bernard E., Lothenbach B., Cau-Dit-Coumes C. et al. // Appl. Geochem. 2018. V. 89. P. 229. https://doi.org/10.1016/j.apgeochem.2017.12.005
  2. 2. Chudnenko K.V., Palyanova G.A. // Appl. Geochem. 2016. V. 66. P. 88. https://doi.org/10.1016/j.apgeochem.2015.12.005
  3. 3. Lothenbach B., Kulik D.A., Matschei T. et al. // Cem. Concr. Res. 2019. V. 115. P. 472. https://doi.org/10.1016/j.cemconres.2018.04.018
  4. 4. Zhen-Wu B.Y., Prentice D.P., Ryan J.V. et al. // npj Mater. Degr. 2020. V. 4. № 1. P. 2. https://doi.org/10.1038/s41529-019-0106-1
  5. 5. Bychinsky V., Charykova M., Omara R. // Geochem. 2021. V. 81. № 4. P. 125799. https://doi.org/10.1016/j.chemer.2021.125799
  6. 6. Мухетдинова А.В., Бычинский В.А., Тупицын А.А. и др. // Изв. вузов. Цвет. мет. 2009. № 4. С. 29.
  7. 7. Grushko I.S., Bychinskii V.A., Chudnenko K.V. // JOM. 2021. V. 73. № 10. P. 3000. https://doi.org/10.1007/s11837-021-04820-w
  8. 8. Bykov V.N., Koroleva O.N. // Geochem. Int. 2010. V. 48. № 11. P. 1128. https://doi.org/10.1134/s0016702910110066
  9. 9. Koroleva O.N., Bychinsky V.A., Tupitcyn A.A. // J. Non-Cryst. Solids. 2021. V. 571. P. 121065. https://doi.org/10.1016/j.jnoncrysol.2021.121065
  10. 10. Бычинский В.А., Тупицын А.А., Королева О.Н. и др. // Журн. неорган. химии. 2013. Т. 58. № 7. С. 930.
  11. 11. Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ / Под ред. Глушко В.П. Т. III. Кн. 1. М.: Наука, 1981. 472 с. Т. IV. Кн. 1. М.: Наука, 1982. 623 с.
  12. 12. Chase M.W., Davies C.A., Downey J.R. et al. JANAF Thermochemical Tables. Third Edition. Washington, D.C.: Am. Chem. Soc., 1985. Part I. 926 p. Part II. 929 p.
  13. 13. Rollet A.P. // C.R. Acad. Sci. 1936. V. 202. P. 1863.
  14. 14. Morey G.W., Merwing H.E. // J. Am. Chem. Soc. 1936. V. 58. № 11. P. 2248. https://doi.org/10.1021/ja01302a048
  15. 15. Sastry B.S.R., Hummel F.A. // J. Am. Ceram. Soc. 1958. V. 41. № 1. P. 7. https://doi.org/10.1111/j.1151-2916.1958.tb13496.x
  16. 16. Sastry B.S.R., Hummel F.A. // J. Am. Ceram. Soc. 1959. V. 42. № 5. P. 216. https://doi.org/10.1111/j.1151-2916.1959.tb15456.x
  17. 17. Adami L.H., Joe C.J. Heats of formation of four anhydrous sodium borates. Washington: U. S. Dept. of the Interior, Bureau of Mines. 1968. 9 p.
  18. 18. Медведев В.А., Бергман Г.А., Васильев В.П. и др. Термические константы веществ / Под ред. Глушко В.П. Вып. V. М.: ВИНИТИ, 1971. 530 с. Вып. IX. М.: ВИНИТИ, 1979. 574 с. Вып. X. Ч. 1. М.: ВИНИТИ, 1981. 299 с. Вып. X. Ч. 2. М.: ВИНИТИ, 1981. 441 с.
  19. 19. Wang C., Yu H., Liu H., Jin Z. // J. Phase Equilib. 2003. V. 24. № 1. P. 12. https://doi.org/10.1007/s11669-003-0003-7
  20. 20. Jenkins H.D.B. // J. Chem. Thermodyn. 2019. V. 135. P. 278. https://doi.org/10.1016/j.jct.2019.03.013
  21. 21. Jenkins H.D.B. // J. Chem. Thermodyn. 2020. V. 144. P. 106052. https://doi.org/10.1016/j.jct.2020.106052
  22. 22. Еремин О.В., Эпова Е.С., Русаль О.С. и др. // Журн. неорган. химии. 2016. Т. 61. № 8. С. 1053.
  23. 23. Wu T., Moosavi-Khoonsari E., Jung I.-H. // Calphad. 2017. V. 57. P. 107. https://doi.org/10.1016/j.calphad.2017.03.002
  24. 24. Алдабергенов М.К., Балакаева Г.Т. // Журн. физ. химии. 1993. Т. 67. № 3. С. 425.
  25. 25. Королева О.Н., Бычинский В.А., Тупицын А.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 9. С. 1211.
  26. 26. Штенберг М.В., Бычинский В.А., Королева О.Н. и др. // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1470.
  27. 27. Shartsis L., Capps W. // J. Am. Ceram. Soc. 1954. V. 37. № 1. P. 27. https://doi.org/10.1111/j.1151-2916.1954.tb13974.x
  28. 28. Шульц М.М., Борисова Н.В., Ведищева Н.М. и др. // Физ. хим. стекла. 1979. Т. 5. № 1. С. 36.
  29. 29. Joshio T., Takahashi K. // J. Ceram. Soc. Jpn. 1976. V. 84. P. 62.
  30. 30. Колесов В.П., Скуратов С.М., Зайкин И.Д. // Журн. неорган. химии. 1959. Т. 4. № 6. С. 1237.
  31. 31. Grenier G., White D. // J. Phys. Chem. 1957. V. 61. № 12. P. 1681.
  32. 32. Wagman D.D., Evans W.H., Parker V.B. et al. Selected Values of Chemical Thermodynamic Properties. Compounds of Uranium, Protactinium, Thorium, Actinium, and the Alkali Metals. NBS Tech. Note 270-8. Washington: 1981. 149 p.
  33. 33. Yokokawa H. // J. Nat. Chem. Lab. Industry. 1988. V. 83. P. 27.
  34. 34. Knacke O., Kubaschewski O., Hesselmann K. Thermochemical Properties of Inorganic Substances. 2nd Edition. Berlin: Springer-Verlag, 1991. 2412 p.
  35. 35. Kubaschewski O., Alock C.B., Spencer P.J. Material Thermochemistry. N.Y.: Pergamon Press, 1993. 363 p.
  36. 36. Pankratz L.B. Thermodynamic properties of carbides, nitrides, and other selected substances. Washington: U. S. Dep. of the Interior, Bureau of Mines, Bul. 696. 1994. 957 p.
  37. 37. Barin I. Thermochemical data of pure substances. 3th ed. Weinheim: VCH-Verlag, 1996. 1885 p.
  38. 38. Лопатин С.И., Столярова В.Л., Тюрнина Н.Г. и др. // Журн. общ. химии. 2006. Т. 76. № 11. С. 1767. Lopatin S.I., Stolyarova V.L., Tyurnina N.G. et al. // Russ. J. Gen. Chem. 2006. V. 76. № 11. P. 1687.
  39. 39. Guest M.F., Pedley L.B., Norn M. // J. Chem. Thermodyn. 1969. V. 1. P. 345. https://doi.org/10.1016/0021-9614 (69)90064-0
  40. 40. Wu K-X., Zhao X-J., Liu Z-H. // J. Chem. Thermodyn. 2018. V. 121. P. 170. https://doi.org/10.1016/j.jct.2018.02.020
  41. 41. Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key Values for Thermodynamics. N.Y.: Hemisphere Publishing Corp., 1989. 271 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library