- PII
- 10.31857/S0044457X2260178X-1
- DOI
- 10.31857/S0044457X2260178X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 4
- Pages
- 546-550
- Abstract
- Samples of monoalkyl and mixed-alkyl phosphine oxides of the hexyl–octyl series were synthesized previously by the Grignard method. Here, the group extraction of rare-earth metals contained simultaneously in their nitrate solutions has been studied using then-synthesized alkyl phosphine oxides. Extraction isotherms for the recovery of the total of lanthanides, scandium, and thorium from nitrate solutions have been obtained. Trihexyl phosphine oxide (THPO) exhibits the highest efficiency under these conditions. Trioctyl phosphine oxide (TOPO) exhibits the best selectivity to heavy-group lanthanides, which makes it useful for the recovery of the heavy-group lanthanide fraction. In addition, scandium and thorium were extracted completely, which in turn indicates the usefulness of phosphine oxides for their extraction. The separation factors have been determined for the entire lanthanides series.
- Keywords
- нейтральные экстрагенты редкоземельные металлы жидкостная экстракция азотная кислота факторы разделения
- Date of publication
- 01.04.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 42
References
- 1. Михайличенко А.И., Михлин Е.Б., Патрикеев Ю.Б. Редкоземельные металлы. М.: Металлургия, 1987. 232 с.
- 2. Zhang J., Zhao B., Schreiner B. Separation Hydrometallurgy of Rare Earth Elements. Springer London, 2016. P. 259. https://doi.org/10.1007/978-3-319-28235-0
- 3. Rickelton W.A., Robertson A.J. Process for solvent extraction using phosphine oxide mixtures. US4909939A USA. 1990. Int. Cl. B01D 11/04.
- 4. Li W., Wang X., Zhang H. et al. // J. Chem. Technol. Biotechnol. 2007. V. 82. № 4. P. 376. https://doi.org/10.1002/jctb.1680
- 5. Fleitlikh I.Yu., Grigorieva N.A., Nikiforova L.K. et al. // Sep. Sci. Technol. 2017. P. 1. https://doi.org/10.1080/01496395.2017.1291682
- 6. Navarro R., Saucedo I., Ávila M. et al. // Solvent Extr. Ion Exch. 2007. V. 25. № 2. P. 273. https://doi.org/10.1080/0736629060116938
- 7. Kaŝpárek F., Trávnicek Z., Posolda M. et al. // J. Coord. Chem. 1998. V. 44. P. 61. https://doi.org/10.1080/00958979808022880
- 8. Huang T., Huang C., Chen D. // Solvent Extr. Ion Exch. 1997. V. 15. № 5. P. 837. https://doi.org/10.1080/07366299708934509
- 9. Fleitlikh I.Yu., Grigorieva N.A., Nikiforova L.K. et al. // Hydrometallurgy. 2017. V. 169. P. 585. https://doi.org/10.1016/j.hydromet.2017.04.004
- 10. Zhang L., Ji L., Li L. et al. // Hydrometallurgy. 2021. V. 204. № 105718. https://doi.org/10.1016/j.hydromet.2021.105718
- 11. Xia X., Zhang G., Guan W. et al. // Hydrometallurgy. 2022. V. 208. № 105818. https://doi.org/10.1016/j.hydromet.2022.105818
- 12. Zou D., Chen J., Li D. // Sep. Purif. Technol. 2021.V. 277. № 119470. https://doi.org/10.1016/j.seppur.2021.119470
- 13. Turanov A.N., Karandashev V.K., Kharitonov A.V. // Solv. Ext. Ion Exch. 1999. V. 17. № 6. P. 1423.
- 14. Chhatre M.H., Shinde V.M. // Solv. Ext. Ion Exch. 2000. V. 18. № 1. P. 41. https://doi.org/10.1080/07366290008934671
- 15. Aly H.F, Khalifa S.M., Zakareia N. // Solv. Ext. Ion Exch. 1984. V. 2. № 6. P. 887. https://doi.org/10.1080/07366298408918480
- 16. Padhan E., Sarangi K. // Miner. Process. Extr. Metall. 2017. V. 128. № 3. P. 168. https://doi.org/10.1080/03719553.2017.1381815
- 17. Ali A. // Radiochim. Acta. 2004. V. 92. № 12. P. 925. https://doi.org/10.1524/ract.92.12.925.55102
- 18. Batchu N.K., Li Z., Verbelen B. et al. // Sep. Purif. Technol. 2021. V. 205. № 117711. https://doi.org/10.1016/j.seppur.2020.117711
- 19. Jesus K.D., Rodriguez R., Baek D.L. et al. // J. Mol. Liq. 2021. V. 333. № 116006. https://doi.org/10.1016/j.molliq.2021.116006
- 20. Alcaraz L., Largo O.R., Alguacil F.J. et al. // Metals. 2022. V. 12. P. 378. https://doi.org/10.3390/met12030378
- 21. Harmon H.D., Peterson J.R. // J. Inorg. Nucl. Chem. 1976. V. 38. P. 155.
- 22. Mishra S., Chakravortty V., Vasudeva Rao P.R. // J. Radioanal. Nucl. Chem. Lett. 1995. V. 201. № 4. P. 325.
- 23. Jianchen W., Chongli S. // Solv. Ext. Ion Exch. 2001. V. 19. № 2. P. 231. https://doi.org/10.1081/SEI-100102693
- 24. Wang J., Song C., Liu B. // J. Nucl. Radiochem. 1995. V. 17. № 3. P. 129.
- 25. Mitrofanov A., Andreadi N., Matveev P. et al. // J. Mol. Liq. 2021. V. 325. № 115098. https://doi.org/10.1016/j.molliq.2020.115098
- 26. Annam S., Gopakumar G., Rao C.V.S.B. // J. Mol. Liq. 2018. V. 256. P. 416. https://doi.org/10.1016/j.molliq.2018.02.063
- 27. Donat R., Tavsan E. // Heliyon. 2022. V. 8. № e09258. https://doi.org/10.1016/j.heliyon.2022.e09258
- 28. Tumanov V.V., Storozhenko P.A., Magdeev K.D. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. № 6. P. 1327. https://doi.org/10.1134/S0036024422060279
- 29. Dziwinski E., Szymanowski J. // Solv. Ext. Ion Exch. 1998. V. 16. P. 1515. https://doi.org/10.1080/07366299808934592
- 30. Кнунянц И.Л. Химическая энциклопедия. В 5 т. Т. 4: Полимерные материалы – Трипсин. М.: Большая Рос. энцикл., 1995. 639 с.
- 31. Rydberg J., Musikas C., Choppin G.R. Complexation of Metal Ions in Principles of Solvent Extraction. N.Y.: M. Dekker, 1992. P. 71.
- 32. Mastryukova T.A., Kabachnik M.I. // J. Org. Chem. 1971. V. 336. P. 1201.
- 33. Розен А.М., Крупнов Б.В. // Успехи химии. 1996. Т. 65. Вып. 11. С. 1052.
- 34. Schurhammer A., Erhart V., Troxler L. et al. // J. Chem. Soc., Perkin Trans. 1999. V. 2. P. 2423.
- 35. Nagaphani Kumar B., Zheng L., Bram V. // Sep. Purif. Technol. 2021. V. 225. P. 117711. https://doi.org/10.1016/j.seppur.2020.117711