RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Effect of Synthesis Conditions on the Thermoluminescence of LiMgPO4

PII
10.31857/S0044457X22601754-1
DOI
10.31857/S0044457X22601754
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
277-282
Abstract
Lithium magnesium phosphate LiMgPO4 is one of the most promising materials for luminescence dosimetry. In this paper, we consider methods for the synthesis or additional processing of this material, such as microwave, hydrothermal, and flux techniques, as well as melting followed by quenching, which makes it possible to enhance its thermoluminescence by increasing the crystallinity of the samples and improving grain contacts. The best properties are shown by the LiMgPO4–Na2B4O7 composite.
Keywords
фосфат дозиметрия дефекты
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
  2. 2. Sidorov A.I., Kirpichenko D.A., Yurina U.V., Podsvirov O.A. // Glass Phys. Chem. 2021. V. 47. P.118. https://doi.org/10.1134/S1087659621020140
  3. 3. Abdel Rahman R.O., Hung Y.T. // Water. 2020. V. 12. P. 19. https://doi.org/10.3390/w12010019
  4. 4. Pyshkina M.D., Nikitenko V.O., Zhukovsky M.V., Eki-din A.A. // AIP Conf. Proc. 2019. V. 2174. P. 020158. https://doi.org/10.1063/1.5134309
  5. 5. Noor N.M., Fadzil M.S.A., Ung N. et al. // Radiat. Phys. Chem. 2016. V. 126. P. 56. https://doi.org/10.1016/j.radphyschem.2016.05.001
  6. 6. Rivera T. // Appl. Radiat. Isot. 2012. V. 71. P. 30. https://doi.org/10.1016/j.radphyschem.2016.05.001
  7. 7. Sears D.W., Sears H., Sehlke A., Hughes S.S. // J. Volcanol. Geotherm. Res. 2018. V. 349. P. 74. https://doi.org/10.1016/j.jvolgeores.2017.09.022
  8. 8. Miyahara M.M., Sugi E., Katoh T. et al. // Radiat. Phys. Chem. 2012. V. 81. P. 705. https://doi.org/10.1016/j.jvolgeores.2017.09.022
  9. 9. Yukihara E.G., McKeever S.W.S. Optically Stimulated Luminescence: Fundamentals and Applications. Wiley, 2011.
  10. 10. Mckeever S.W.S. Thermoluminescence of Solids. Cambridge University Press, 1985.
  11. 11. Menon S.N., Singh A.K., Kadam S. et al. // J. Food Proc. Preserv. 2019. V. 43. P. 13891. https://doi.org/10.1111/jfpp.13891
  12. 12. Menon S.N., Dhabekar B.S., Kadam S., Koul D.K. // Nucl. Instrum. Methods Phys. B. 2018. V. 436. P. 45. https://doi.org/10.1016/j.nimb.2018.08.052
  13. 13. Guo J., Tang Q., Zhang C. et al. // J. Rare Earths. 2017. V. 35. P. 525. https://doi.org/10.1016/S1002-0721 (17)60943-8
  14. 14. Gieszczyk W., Bilski P., Kłosowski M. et al. // Radiat. Measur. 2018. V. 113. P. 14. https://doi.org/10.1016/j.radmeas.2018.03.007
  15. 15. Menon S.N., Dhabekar B.S., Raja A., Chougaonkar M.P. // Radiat. Measur. 2012. V. 47. P. 236. https://doi.org/10.1016/j.radmeas.2011.12.013
  16. 16. Palan C.B., Bajaj N.S., Soni A., Omanwar S.K. // Bull. Mater. Sci. 2016. V. 39. P. 1157. https://doi.org/10.1007/s12034-016-1261-4
  17. 17. Chougaonkar M.P., Kumar M., Bhatt B.C. // Int. J. Lum. Appl. 2012. V. 2. P. 194.
  18. 18. Kulig D., Gieszczyk W., Marczewska B. et al. // Radiat. Measur. 2017. V. 106. P. 94. https://doi.org/10.1016/j.radmeas.2017.04.004
  19. 19. Kalinkin M.O., Abashev R.M., Zabolotskaya E.V. et al. // Mater. Res. Express. 2019. V. 6. P. 046206. https://doi.org/10.1088/2053-1591/aafd3e
  20. 20. Kellerman D.G., Medvedeva N.I., Kalinkin M.O. et al. // J. Alloys Compd. 2018. V. 766. P. 626. https://doi.org/10.1016/j.jallcom.2018.06.328
  21. 21. Modak P., Modak B. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 16244. https://doi.org/10.1039/D0CP02425B
  22. 22. Medvedeva N.I., Kellerman D.G., Kalinkin M.O. // Mater. Res. Express. 2019. V. 6. 106304. https://doi.org/10.1088/2053-1591/ab3882
  23. 23. Wang D., Li L., Jiang J. et al. // J. Mater. Res. 2021. V. 36. P. 333. https://rdcu.be/cTWVM
  24. 24. Su Y.K., Peng Y.M., Yang R.Y., Chen J.L. // Opt. Mater. 2012. V. 34. P. 1598. https://doi.org/10.1016/j.optmat.2012.03.019
  25. 25. Agathopoulos S. // J. Ceram. Soc. Jpn. 2012. V. 120. P. 233. https://doi.org/10.2109/jcersj2.120.233
  26. 26. Kalinkin M.O., Akulov D.A., Medvedeva N.I. et al. // Mater. Today Com. 2022. V. 31. P. 103346. https://doi.org/10.1016/j.mtcomm.2022.103346
  27. 27. Mehrabi M., Zahedifar M., Hasanloo S. et al. // Radiat. Phys. Chem. 2022. V. 194. P. 110057. https://doi.org/10.1016/j.radphyschem.2022.110057
  28. 28. Ozdemir A., Guckan V., Altunal V. et al. // J. Lumines. 2021. V. 230. P. 117761. https://doi.org/10.1016/j.jlumin.2020.117761
  29. 29. Kutub A.A., Elmanhawaawy M.S., Babateen M.O. // Solid State Sci. Technol. 2007. V. 15. P. 191.
  30. 30. Gieszczyk W., Bilski P., Mrozik A. et al. // Materials. 2020. V. 13. 2032. https://doi.org/10.3390/ma13092032
  31. 31. Kellerman D.G., Kalinkin M.O., Tyutyunnik A.P. et al. // J. Alloys Compd. 2020. V. 846. 156242. https://doi.org/10.1016/j.jallcom.2020.156242
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library