RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis and Investigation of Na1 – xR0.33xTiO2(PO4)3 (R = Y or La) Phosphates

PII
10.31857/S0044457X22601602-1
DOI
10.31857/S0044457X22601602
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 3
Pages
291-299
Abstract
Phosphates Na1 – xR0.33xTi2(PO4)3 (R = Y or La; 0 ≤ х ≤ 1) were synthesized by the Pechini process and characterized by X-ray diffraction, electron microscopy with microprobe analysis, and IR spectroscopy. The systems exhibit isodimorphism to form a series of solid solutions belonging to the NaZr2(PO4)3 (NZP) structural type and crystallizing in space group R c or R The Rietveld structural studies confirmed the isomorphic miscibility of sodium and the rare-earth element in the interstices of the NZP structure. The unit cell parameter с in the phosphates studied tends to increase, and the parameter а tends to decrease, in response to rising temperature, which trends are typical of NZP phosphates.
Keywords
NZP фазообразование структура тепловое расширение редкоземельные элементы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Pet’kov V.I., Asabina E.A. // Glass Ceram. 2004. V. 61. № 7. P. 233. https://doi.org/10.1023/B:GLAC.0000048353.42467.0a
  2. 2. Kimpa M.I., Mayzan M.Z.H., Yabagi J.A. et al. // IOP Conf. Series: Earth and Environmental Science. 2018. V. 140. P. 012156. https://doi.org/10.1088/1755-1315/140/1/012156
  3. 3. Naqash S., Gerhards M.-Th., Tietz F. et al. // Batteries. 2018. V. 4. P. 33. https://doi.org/10.3390/batteries4030033
  4. 4. Anantharamulu N., Koteswara Rao K., Rambabu G. et al. // J. Mater. Sci. 2011. V. 46. P. 2821. https://doi.org/10.1007/s10853-011-5302-5
  5. 5. Куншина Г.Б., Бочарова И.В. // Физика и химия стекла. 2020. Т. 46. № 6. С. 615. https://doi.org/10.31857/S0132665120060141
  6. 6. Курзина Е.А., Стенина И.А., Далви А. и др. // Неорган. материалы. 2021. Т. 57. № 10. С. 1094. https://doi.org/10.31857/S0002337X21100079
  7. 7. Achary S.N., Bevara S., Tyagi A.K. // Coord. Chem. Rev. 2017. V. 340. P. 266. https://doi.org/10.1016/j.ccr.2017.03.006
  8. 8. Стеблевская Н.И., Белобелецкая М.В., Устинов А.Ю. и др. // Журн. неорган. химии. 2019. Т. 64. № 2. С. 179. https://doi.org/10.1134/S0044457X19020211
  9. 9. Kodaira C.A., Brito H.F., Malta O.L. et al. // J. Lumin. 2003. V. 101. P. 11.
  10. 10. Lin M., Zhao Y. Wang S. et al. // Biotechnol. Adv. 2012. V. 30. P. 1551.
  11. 11. He X., Huang J., Zhou. L. et al. // Cent. Eur. J. Phys. 2012. V. 10. P. 514. https://doi.org/10.2478/s11534-012-0014-2
  12. 12. Kanunov A.E., Orlova A.I. // Rev. J. Chem. 2018. V. 8. P. 1. https://doi.org/10.1134/S207997801801003X
  13. 13. Glorieux B., Jubera V., Orlova A.I. et al. // Inorg. Mater. 2013. V. 49. P. 82. https://doi.org/10.1134/S0020168513010032
  14. 14. Hirayama M., Sonoyama N., Yamada A. et al. // J. Solid State Chem. 2009. V. 182. P. 730. https://doi.org/10.1016/j.jssc.2008.12.015
  15. 15. Wang J., Zhang Z.-J. // J. Alloys Compd. 2016. V. 685. P. 841. https://doi.org/10.1016/j.jallcom.2016.06.224
  16. 16. Швецов А.Е., Корытцева А.К. // Журн. общ. химии. 2015. Т. 85. № 3. С. 359.
  17. 17. Слободяник Н.С., Нагорный П.Г., Корниенко З.И. и др. // Журн. неорган. химии. 1988. Т. 33. № 2. С. 443.
  18. 18. Zatovsky I.V., Slobodyanik N.S., Stratiychuk D.A. et al. // Z. Naturforsch., B: Chem. Sci. 2000. V. 55. P. 291. https://doi.org/10.1515/znb-2000-3-411
  19. 19. Bykov D.M., Gobechiya E.R., Kabalov Yu.K. et al. // J. Solid State Chem. 2006. V. 179. P. 3101. https://doi.org/10.1016/j.jssc.2006.06.002
  20. 20. Barre M. These Présentée à L’Université du Maine pour obtenir le titre de docteur de L’Université du Maine. Mention Chimie de l’Etat Solide. 2007. 173 p.
  21. 21. Barre M., Crosnier-Lopez M.P., Le Berre F. et al. // Chem. Mater. 2005. V. 17. P. 6605.
  22. 22. Barre M., Le Berre F., Crosnier-Lopez M.P. et al. // Chem. Mater. 2006. V. 18. P. 5486.
  23. 23. Kurazhkovskaya V.S., Bykov D.M., Borovikova E.Yu. et al. // Vibrat. Spectrosc. 2010. V. 52. P. 137.
  24. 24. Kanunov A., Orlova A., Zavedeeva G. et al. // Bull. Mater. Sci. 2017. V. 40. № 1. P. 7. https://doi.org/10.1007/s12034-016-1337-1
  25. 25. Lightfoot P., Woodcock D.A., Jorgensen J.D. et al. // Int. J. Inorg. Mater. 1999. V. 1. P. 53.
  26. 26. Асабина Е.А., Шварев Р.Р., Петьков В.И. и др. // Журн. неорган. химии. 2017. Т. 62. № 9. С. 1224. https://doi.org/10.7868/S0044457X17090136
  27. 27. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
  28. 28. Matraszek A., Godlewska P., Macalik L. et al. // Alloys Compd. 2015. V. 619. P. 275.
  29. 29. László E. International Series of Monographs on Analytical Chemistry, Gravimetric Analysis. Pergamon: Elsevier, 1965. P. 814.
  30. 30. Калинкин А.М., Кузьменков О.А. Калинкина Е.В. и др. // Журн. общ. химии. 2022. Т. 92. № 6. С. 981. https://doi.org/10.31857/S0044460X22060178
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library