RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

High-Temperature Electrically Conductive Polymer Composites with Single-Walled Carbon Nanotubes

PII
10.31857/S0044457X22601511-1
DOI
10.31857/S0044457X22601511
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
271-276
Abstract
High-temperature composite materials comprising single-walled carbon nanotubes embedded in a polybenzimidazole (PBI) polymer matrix with a weight percentage of nanotubes from 1 to 5% were prepared and characterized. Film composite samples were prepared by flow-coating from dispersions of nanotubes in 2% PBI solution in N-methyl-2-pyrrolidone. The temperature dependences of electrical resistance of the composites were studied in the range from room temperature to 300°C in a high vacuum at a pressure less than 1 × 10–3 Pa. The first heating cycle to 300°C gave rise to an increase in room-temperature electrical resistance of the samples due to the desorption of oxygen from the nanotubes. For the composites containing 5 and 1% nanotubes, the change was about 1.4 and 500 times, respectively. This increase was reversible: when the samples were transferred to the ambient air, the electrical resistance relaxed to its initial value. The thermal stability of the composites was proved by the repeatability of the subsequent heating cycles and by thermogravimetric analysis.
Keywords
полибензимидазол энергия активации электросопротивление теплостойкие полимеры
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Wang Y., Wang A.X., Wang Y. et al. // Sensors Actuators A Phys. 2013. V. 199. P. 265. https://doi.org/10.1016/j.sna.2013.05.023
  2. 2. Zhou L.S., Jung S.Y., Brandon E. et al. // IEEE T. Electron Dev. 2006. V. 53. № 2. P. 380. https://doi.org/10.1109/TED.2005.861727
  3. 3. Hu N., Karube Y., Arai M. et al. // Carbon. 2010. V. 48. № 3. P. 680. https://doi.org/10.1016/j.carbon.2009.10.012
  4. 4. Yu X.W., Cheng H.H., Zhang M. et al. // Nat. Rev. Mater. 2017. V. 2. № 9. P. 13. https://doi.org/10.1038/natrevmats.2017.46
  5. 5. Li Q.Y., Luo S.J., Wang Y. et al. // Sens. Actuators, A. 2019. V. 300. P. 7. https://doi.org/10.1016/j.sna.2019.111664
  6. 6. Zhan P.F., Zhai W., Wang N. et al. // Mater. Lett. 2019. V. 236. P. 60. https://doi.org/10.1016/j.matlet.2018.10.068
  7. 7. Kim H., Abdala A.A., Macosko C.W. // Macromolecules. 2010. V. 43. № 16. P. 6515. https://doi.org/10.1021/ma100572e
  8. 8. Kuilla T., Bhadra S., Yao D. et al. // Prog. Polym. Sci. 2010. V. 35. № 11. P. 1350. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  9. 9. Verdejo R., Bernal M.M., Romasanta L.J. et al. // J. Mater. Chem. 2011. V. 21. P. 3301. https://doi.org/10.1039/c0jm02708a
  10. 10. Huang X., Qi X., Boey F. et al. // Chem. Soc. Rev. 2012. V. 41. № 2. P. 666. https://doi.org/10.1039/c1cs15078b
  11. 11. He L., Tjong S.C. // Mater. Sci. Eng., R. 2016. V. 109. P. 1. https://doi.org/10.1016/j.mser.2016.08.002
  12. 12. Idumah C.I., Hassan A. // Rev. Chem. Eng. 2016. V. 32. № 2. P. 223. https://doi.org/10.1515/revce-2015-0038
  13. 13. Nguyen D.N., Yoon H. // Polymers. 2016. V. 8. № 4. P. 118. https://doi.org/10.3390/polym8040118
  14. 14. Saleem H., Edathil A., Ncube T. et al. // Macromol. Mater. Eng. 2016. V. 301. № 3. P. 231. https://doi.org/10.1002/mame.201500335
  15. 15. Yin F.X., Yang J.Z., Peng H.F. et al. // J. Mater. Chem. C. 2018. V. 6. № 25. P. 6840. https://doi.org/10.1039/c8tc00839f
  16. 16. Mainwaring D., Murgaraj P., Huertas N.E.M. // Polymeric strain sensor, WO. 2006/125253 A1, 2006. https://patentimages.storage.googleapis.com/73/6f/b-b/41950bc07f72ed/WO2006125253A1.pdf
  17. 17. Vogel H., Marvel C.S. // J. Polym. Sci., A: Polym. Chem. 1996. V. 34. № 7. P. 1125. https://doi.org/10.1002/pola.1996.826
  18. 18. Chung T.-S. // J. Macromol. Sci., Part C. 1997. V. 37. № 2. P. 277. https://doi.org/10.1080/15321799708018367
  19. 19. DeMeuse M.T. ed. by // High Temperature Polymer Blends. Woodhead Publishing, 2014. 232 p.
  20. 20. Okamoto M., Fujigaya T., Nakashima N. // Adv. Funct. Mater. 2008. V. 18. № 12. P. 1776. https://doi.org/10.1002/adfm.200701257
  21. 21. Okamoto M., Fujigaya T., Nakashima N. // Small. 2009. V. 5. № 6. P. 735. https://doi.org/10.1002/smll.200801742
  22. 22. Ueda M., Sato M., Mochizuki A. // Macromolecules. 1985. V. 18. № 12. P. 2723. https://doi.org/10.1021/ma00154a060
  23. 23. Leykin A.Y., Fomenkov A.I., Galpern E.G. et al. // Polymer. 2010. V. 51. № 18. P. 4053. https://doi.org/10.1016/j.polymer.2010.06.053
  24. 24. Eaton P.E., Carlson G.R., Lee J.T. // J. Org. Chem. 1973. V. 38. № 23. P. 4071. https://doi.org/10.1021/jo00987a028
  25. 25. Kholkhoev B.C., Gorenskaya E.N., Bal’zhinov S.A. et al. // Russ. J. Appl. Chem. 2016. V. 89. № 5. P. 780. https://doi.org/10.1134/s1070427216050153
  26. 26. Kuznetsov V.A., Lavrov A.N., Kholkhoev B.C. et al. // J. Contemp. Phys. 2020. V. 55. № 1. P. 57. https://doi.org/10.3103/s1068337220010089
  27. 27. Brooks N.W., Duckett R.A., Rose J. et al. // Polymer. 1993. V. 34. № 19. P. 4038. https://doi.org/10.1016/0032-3861 (93)90664-V
  28. 28. Eletskii A.V., Knizhnik A.A., Potapkin B.V. et al. // Physics-Uspekhi. 2015. V. 58. № 3. P. 209. https://doi.org/10.3367/UFNe.0185.201503a.0225
  29. 29. Kaiser A.B., Skákalová V. // Chem. Soc. Rev. 2011. V. 40. № 7. P. 3786. https://doi.org/10.1039/C0CS00103A
  30. 30. Dresselhaus M.S., Eklund P.C. // Adv. Phys. 2000. V. 49. № 6. P. 705. https://doi.org/10.1080/000187300413184
  31. 31. Collins P.G., Bradley K., Ishigami M. et al. // Science. 2000. V. 287. № 5459. P. 1801. https://doi.org/10.1126/science.287.5459.1801
  32. 32. D’yachkov P.N. // Russ. J. Inorg. Chem. 2011. V. 56. № 14. P. 2160. https://doi.org/10.1134/S003602361114002633
  33. 33. Bradley K., Jhi S.-H., Collins P.G. et al. // Phys. Rev. Lett. 2000. V. 85. № 20. P. 4361. https://doi.org/10.1103/PhysRevLett.85.4361
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library