RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Thermodynamics of Cesium Molybdate-Based Single Crystals: Standard Enthalpy of Formation, Lattice Enthalpy, and Heat Capacity

PII
10.31857/S0044457X22601456-1
DOI
10.31857/S0044457X22601456
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
203-208
Abstract
Cs2MoO4 and Li1.9Cs0.1MoO4 crystals were grown from melt by the low-thermal-gradient Czochralski technique. The standard formation enthalpy of cesium molybdate Cs2MoO4 was measured by solution calorimetry. The heat capacity of Li1.9Cs0.1MoO4 was measured by differential scanning calorimetry (DSC) in the temperature range 320–710 K. The lattice enthalpy of Cs2MoO4 was calculated using the Born-Haber cycle. Cesium molybdate was shown to be thermodynamically stable to decomposition into constituent simple oxides (Cs2O and MoO3), which made it promising for application. Li1.9Cs0.1MoO4 experienced no phase transitions in the temperature range 320–710 K.
Keywords
молибдат цезия стандартная энтальпия образования энтальпия решетки теплоемкость калориметрия растворения ДСК-калориметрия
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1779. https://doi.org/10.1134/S0036023621120160
  2. 2. Bekker T.B., Coron N., Danevich F.A. et al. // Astroparticle Phys. 2016. V. 72. P. 38. https://doi.org/10.1016/j.astropartphys.2015.06.002
  3. 3. Barinova O., Sadovskiy A., Ermochenkov I. // J. Cryst. Growth. 2017. V. 468. P. 365. https://doi.org/10.1016/j.jcrysgro.2016.10.009
  4. 4. Fattakhova Z.A., Vovkotrub E.G., Zhknarova G.S. // Russ. J. Inorg. Chem. 2021. V. 66. P. 35. https://doi.org/10.1134/S0036023621010022
  5. 5. Teng T., Xiao L., Shen L. et al. // Appl. Surf. Sci. 2022. V. 601. P. 154101. https://doi.org/10.1016/j.apsusc.2022.154101
  6. 6. Isaenko L.I., Korzhneva K.E., Khyzhin O.Y. et al. // J. Solid State Chem. 2019. V. 277. P. 786. https://doi.org/10.1016/j.jssc.2019.07.047
  7. 7. Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 245. https://doi.org/10.1134/S0036023622020164
  8. 8. Kim H., Pandey I.R., Khan A. et al. // Cryst. Res. Technol. 2019. V. 54. P. 1900079. https://doi.org/10.1002/crat.201900079
  9. 9. Son J.K., Pandey I.R., Kim H.J. et al. // IEEE Trans. Nucl. Sci. 2018. V. 65. P. 2120. https://doi.org/10.1109/TNS.2018.2818330
  10. 10. Papynov E.K., Shichalin O.O., Belov A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1434. https://doi.org/10.1134/S0036023621090114
  11. 11. Smith A.L., Kauric G., van Eijck L. et al. // J. Solid State Chem. 2017. V. 253. P. 89. https://doi.org/10.1016/j.jssc.2017.05.032
  12. 12. Matskevich N.I., Semerikova A.N., Shlegel V.N. et al. // J. Alloys Compd. 2021. V. 850. P. 156683. https://doi.org/10.1016/j.jallcom.2020.156683
  13. 13. Kasimkin P.V., Moskovskih V.A., Vasiliev Y.V. // J. Cryst. Growth. 2014. V. 390. P. 67. https://doi.org/10.1016/j.jcrysgro.2013.12.027
  14. 14. Volokitina A., Loiko P., Pavlyuk A. et al. // Opt. Mater. Express. 2020. V. 10. P. 2356. https://doi.org/10.1364/OME.400894
  15. 15. Matiutin A.S., Kovalenko N.A., Uspenskaya I.A. // J. Chem. Eng. Data. 2022. V. 67. P. 984. https://doi.org/10.1021/acs.jced.1c00849
  16. 16. Druzhinina A.I., Tiflova L.A., Monayenkova A.S. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2101. https://doi.org/10.1134/S0036024419110098
  17. 17. Matskevich N.I., Kellerman D.G., Gelfond N.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 720. https://doi.org/10.1134/S0036023620050150
  18. 18. Tsvetkov D.S., Sereda V.V., Malyshkin D.A. et al. // Chim. Techno Acta. 2021. V. 7. P. 42. https://doi.org/10.15826/CHIMTECH.2020.7.2.01
  19. 19. Matskevich N.I., Wolf Th., Vyazovkin I.V. et al. // J. Alloys Compd. 2015. V. 628. P. 126. https://doi.org/10.1016/j.jallcom.2014.11.220
  20. 20. Matskevich N.I., Chuprova M.V., Punn R. et al. // Thermochim. Acta. 2007. V. 459. P. 125. https://doi.org/10.1016/j.tca.2007.03.015
  21. 21. Matskevich N.I., Krabbes G., Berasteguie P. // Thermochim. Acta. 2003. V. 397. P. 97. https://doi.org/10.1016/S0040-6031 (02)00330-1
  22. 22. Kilday M.V. // J. Res. Nat. Bur. Stand. 1980. V. 85. P. 467.
  23. 23. Gunther C., Pfestorf R., Rother M. et al. // J. Therm. Anal. Calorim. 1988. V. 33. P. 359. https://doi.org/10.1007/BF01914624
  24. 24. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 1195. https://doi.org/10.1134/S0036024422060103
  25. 25. Zvereva I.A., Shelyapina M.G., Chislov M. et al. // J. Therm. Anal. Calorim. 2022. V. 147. P. 6147. https://doi.org/10.1007/s10973-021-10947-4
  26. 26. Kosova D.A., Provotorov D.I., Kuzovchikov S.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 752. https://doi.org/10.1134/S0036023620050125
  27. 27. Samoshkin D.A., Agazhanov A.Sh., Stankus S.V. // J. Phys.: Conf. Ser. 2021. V. 2119. P. 012135. https://doi.org/10.1088/1742-6596/2119/1/012135
  28. 28. Smirnova N.N., Markin A.V., Abarbanel N.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2387. https://doi.org/10.1134/S0036024421120219
  29. 29. Matskevich N.I., Wolf Th., Le Tacon M. et al. // J. Therm. Anal. Calorim. 2017. V. 130. P. 1125. https://doi.org/10.1007/s10973-017-6493-z
  30. 30. Drebushchak V.A., Isaenko L.I., Lobanov S.I. et al. // J. Therm. Anal. Calorim. 2017. V. 129. P. 103. https://doi.org/10.1007/s10973-017-6176-9
  31. 31. Tkachev E.N., Matskevich N.I., Samoshkin D.A. et al. // Phys. B: Cond. Matter. 2021. V. 612. P. 412880. https://doi.org/10.1016/j.physb.2021.412880
  32. 32. Khan A., Khan S., Kim H.J. et al // Optik. 2021. V. 242. P. 167035. https://doi.org/10.1016/j.ijleo.2021.167035
  33. 33. Glushko V.P. Termicheskie Konstanty Veshchestv (Thermal Constants of Substances), Moscow: VINITI, 1965–1982. № 1–10.
  34. 34. O’Hare P.A.G., Hoekstra H.R. // J. Chem. Thermodyn. 1973. V. 5. P. 851. https://doi.org/10.1016/S0021-9614 (73)80047-3
  35. 35. Musikhin A.E., Naumov V.N., Bespyatov M.A. et al. // J. Alloys Compd. 2015. V. 639. P. 145. https://doi.org/10.1016/j.jallcom.2015.03.159
  36. 36. Orborne D.W., Flotov H.E., Hoekstra H.R. // J. Chem. Thermodyn. 1974. V. 6. P. 179. https://doi.org/10.1016/0021-9614 (74)90260-2
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library