- PII
- 10.31857/S0044457X22601365-1
- DOI
- 10.31857/S0044457X22601365
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 1
- Pages
- 145-154
- Abstract
- Indium oxide–graphene composites (containing 0–6.0 wt % graphene) were manufactured by the sol–gel process. The phase composition, microstructure, and gas-sensitive properties of the prepared materials were studied. The composites consist of isolated In2O3 and graphene phases, where graphene is predominantly adsorbed on the surfaces of indium oxide grains (the indium oxide grain sizes are 8–11 nm). The nanocomposites are distinguished by an enhanced sensitivity to both reducing gases (CH4, acetone) and oxidative gases (NO2). A far greater enhancement is in the sensory response to oxidative gases. Presumably, the major factors influencing the sensory properties of the composite are the high defectiveness of In2O3 and graphene phases, higher specific surface areas of composites compared to those of individual In2O3, and the likely formation of p–n junctions in the indium oxide and graphene contact zone. Graphene additives to indium oxide can improve the main performances (sensory response, response time, and recovery time) of single-electrode semiconductor sensors.
- Keywords
- полупроводниковый газовый сенсор оксид индия графен диоксид азота золь-гель синтез
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Tian W., Liu X., Yu W. // Appl. Sci. 2018. V. 8. P. 1118. https://doi.org/10.3390/app8071118
- 2. Pearce R., Iakimov T. // Sens. Actuators, B: Chem. 2011. V. 155. P. 451. https://doi.org/10.1016/j.snb.2010.12.046
- 3. Sun D., Luo Y., Debliquy M. et al. // Beilstein J. Nanotechnol. 2018. V. 9. P. 2832. https://doi.org/10.3762/bjnano.9.264
- 4. Мокрушин А.С., Симоненко Т.Л., Симоненко Е.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1336. https://doi.org/10.31857/S0044457X21090063
- 5. Wu J., Feng S. // Adv. Funct. Mater. 2016. V. 26. P. 7462. https://doi.org/10.1002/adfm.201603598
- 6. Schedin F., Novoselov K.S., Morozov S.V. et al. // Nat. Mater. 2006. V. 6. P. 652. https://doi.org/10.1038/nmat1967
- 7. Chen C.W., Hung S.C. // Appl. Phys. Lett. 2011. V. 99. P. 243502. https://doi.org/10.1063/1.3668105
- 8. Yu K., Wang P., Lu G. et al. // J. Phys. Chem. Lett. 2011. V. 2. P. 537. https://doi.org/10.1021/jz200087w
- 9. Dutta D., Hazra A., Hazra S.K. et al. // Meas. Sci. Technol. 2015. V. 26. P. 115104. https://doi.org/10.1088/0957-0233/26/11/115104
- 10. Yun J., Lim Y., Jang G.-N. et al. // Nano Energy. 2015. V. 19. P. 401. https://doi.org/10.1016/j.nanoen.2015.11.023
- 11. Yavari F., Castillo E. // Appl. Phys. Lett. 2012. V. 100. P. 203120. https://doi.org/10.1063/1.4720074
- 12. Hwang S., Lim J., Park H.-G. et al. // Curr. Appl. Phys. 2012. V. 12. P. 1017. https://doi.org/10.1016/j.cap.2011.12.021
- 13. Zhang Y.H., Chen Y.B. // Nanotechnology. 2009. V. 20. № 18. P. 185504. https://doi.org/10.1088/0957-4484/20/18/185504
- 14. Dai J., Yuan J. // Appl. Phys. Lett. 2009. V. 95. P. 232105. https://doi.org/10.1063/1.3272008
- 15. Salehikhojin A., Esreada D., Lin K.P. et al. // Adv. Mater. 2012. V. 24. P. 53. https://doi.org/10.1002/adma.201102663
- 16. Zhang X., Yu L., Gui Y. et al. // Appl. Surf. Sci. 2016. V. 367. P. 259. https://doi.org/10.1016/j.apsusc.2016.01.168
- 17. Zhang H., Fan L., Dong H. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 8652. https://doi.org/10.1021/acsami.5b11872
- 18. Ricciardella F., Vollebregt S. // Nanoscale. 2017. V. 9. P. 6085. https://doi.org/10.1039/C7NR01120B
- 19. Lu Y., Dan Y. // Nano Lett. 2009. V. 9. P. 1472. https://doi.org/10.1021/nl8033637
- 20. Zhang L., Li C. // J. Mater. Chem. 2012. V. 22. P. 8438. https://doi.org/10.1039/C2JM16552J
- 21. Huang X., Hu N., Gao R. et al. // J. Mater. Chem. 2012. V. 22. P. 22488. https://doi.org/10.1039/C2JM34340A
- 22. Zou Y., Wang Q., Xiang C. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 5396. https://doi.org/10.1016/j.ijhydene.2016.02.023
- 23. Simon I., Haiduk Yu., Mülhaupt R. et al. // Nano Materials Sci. 2021. V. 3. P. 412. https://doi.org/10.1016/j.nanoms.2021.03.004
- 24. Zhang Z., Zou R. // J. Mater. Chem. 2011. V. 21. P. 17360. https://doi.org/10.1039/C1JM12987B
- 25. Yi J., Lee J.M. // Sens. Actuators, B: Chem. 2011. V. 155. P. 264. https://doi.org/10.1016/j.snb.2010.12.033
- 26. Liu S., Yu B., Zhang H. et al. // Sens. Actuators, B: Chem. 2014. V. 202. P. 272. https://doi.org/10.1016/j.snb.2014.05.086
- 27. Wang C., Zhu J., Liang Sh. et al. // J. Mater. Chem. A. 2014. V. 2. P. 18635. https://doi.org/10.1039/C4TA03931A
- 28. Singkammo S., Wisitsoraat A., Sriprachuabwong Ch. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 3077. https://doi.org/10.1021/acsami.5b00161
- 29. Han M., Liu W., Qu Y. et al. // J. Mater. Sci. Mater. Electron. 2017. V. 28. P. 16973. https://doi.org/10.1007/s10854-017-7619-6
- 30. Karaduman I., Er E., Çelikkan H. et al. // J. Alloys Compd. 2017. V. 722. P. 569. https://doi.org/10.1016/j.jallcom.2017.06.152
- 31. Kim H.W., Kwon J.Y., Mirzaei A. et al. // Sens. Actuators, B: Chem. 2017. V. 249. P. 590. https://doi.org/10.1016/j.snb.2017.03.149
- 32. Wang T., Sun Z., Huang D. et al. // Sens. Actuators, B: Chem. 2017. V. 252. P. 284. https://doi.org/10.1016/j.snb.2017.05.162
- 33. Zhou Y., Lin X., Wang Y. et al. // Sens. Actuators, B: Chem. 2017. V. 240. P. 870. https://doi.org/10.1016/j.snb.2016.09.064
- 34. Bhati V.S., Ranwa S., Rajamani S. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 11116. https://doi.org/10.1021/acsami.7b17877
- 35. Ye Z., Tai H., Guo R. et al. // Appl. Surf. Sci. 2017. V. 419. P. 84. https://doi.org/10.1016/j.apsusc.2017.03.251
- 36. Haiduk Yu., Khort A., Lapitskaya V. et al. // Nano-Structures Nano-Objects. 2022. V. 29. № 2. P. 100824. https://doi.org/10.1016/j.nanoso.2021.100824
- 37. Кулакова И.И., Лисичкин Г.В. // Журн. общ. химии. 2020. Т. 90. № 10. С. 1601. https://doi.org/10.31857/S0044460X20100157
- 38. Korotcenkov G. // Sens. Actuators, B. 2007. V. 121. P. 664. https://doi.org/10.1016/J.SNB.2006.04.092
- 39. Zhu Y., Murali S., Cai W. et al. // Adv. Mater. 2010. V. 22. P. 3906. https://doi.org/10.1002/adma.201090156
- 40. Новиков В.П., Кирик С.А. // Письма в ЖТФ. 2011. Т. 37. С. 44. https://journals.ioffe.ru/articles/viewPDF/12591
- 41. Кричмар С.И., Безпальченко В.М., Мишекин А.А. // Заводская лаборатория. Диагностика материалов. 2008. Т. 74. № 1. С. 21.
- 42. Wall M. The Raman Spectroscopy of Graphene and the Determination of Lazer Thickness. Thermo Fisher Scientific, 2011. https://tools.thermofisher.com/content/sfs/brochures/AN52252_E%201111%20LayerThkns_H_1.pdf
- 43. Gurlo A., Ivanovskaya M., Barsan N. et al. // Sens. Actuators, B: Chem. 1997. V. 44. P. 327. https://doi.org/10.1016/S0925-4005 (97)00199-8
- 44. Marezio M. // Acta Crystallogr. 1966. V. 20. P. 72. https://doi.org/10.1107/S0365110X66001749
- 45. Ivanovskaya M.I., Ovodok E.A., Kotsikau D.A. // Glass Phys. Chem. 2011. V. 37. № 5. P. 560 https://doi.org/10.1134/S1087659611050051
- 46. Поротников Н.В. // Журн. неорган. химии. 1993. Т. 38. № 4. С. 653.
- 47. Sobotta H., Neumann H., Kiin G., Riede V. // Cryst. Res. Technol. 1990. V. 25. P. 61. https://doi.org/10.1002/crat.2170250112
- 48. Liu Y., Ma X., Wang Sh., Gong J. // Appl. Catal. B. 2007. V. 77. P. 125. https://doi.org/10.1016/j.apcatb.2007.07.011
- 49. Haiduk Yu.S., Khort A.A., Lapchuk N.M. et al. // J. Solid State Chem. 2019. V. 273. P. 25. https://doi.org/10.1016/j.jssc.2019.02.023
- 50. Гайдук Ю.С., Савицкий А.А., Хорт А.А. // Журн. неорган. химии. 2019. Т. 64. № 6. С. 594. https://doi.org/10.1134/S0044457X19060072
- 51. Choi S.J., Jang B.-H., Lee S.-J. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 2588. https://doi.org/10.1021/am405088q
- 52. Dey A. // Mater. Sci. Eng., B. 2018. V. 229. P. 206. https://doi.org/10.1016/j.mseb.2017.12.036