RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Indium Oxide–Graphene Composites Prepared by the Sol–Gel Process and Single-Electrode Gas Sensors on Their Base

PII
10.31857/S0044457X22601365-1
DOI
10.31857/S0044457X22601365
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
145-154
Abstract
Indium oxide–graphene composites (containing 0–6.0 wt % graphene) were manufactured by the sol–gel process. The phase composition, microstructure, and gas-sensitive properties of the prepared materials were studied. The composites consist of isolated In2O3 and graphene phases, where graphene is predominantly adsorbed on the surfaces of indium oxide grains (the indium oxide grain sizes are 8–11 nm). The nanocomposites are distinguished by an enhanced sensitivity to both reducing gases (CH4, acetone) and oxidative gases (NO2). A far greater enhancement is in the sensory response to oxidative gases. Presumably, the major factors influencing the sensory properties of the composite are the high defectiveness of In2O3 and graphene phases, higher specific surface areas of composites compared to those of individual In2O3, and the likely formation of p–n junctions in the indium oxide and graphene contact zone. Graphene additives to indium oxide can improve the main performances (sensory response, response time, and recovery time) of single-electrode semiconductor sensors.
Keywords
полупроводниковый газовый сенсор оксид индия графен диоксид азота золь-гель синтез
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Tian W., Liu X., Yu W. // Appl. Sci. 2018. V. 8. P. 1118. https://doi.org/10.3390/app8071118
  2. 2. Pearce R., Iakimov T. // Sens. Actuators, B: Chem. 2011. V. 155. P. 451. https://doi.org/10.1016/j.snb.2010.12.046
  3. 3. Sun D., Luo Y., Debliquy M. et al. // Beilstein J. Nanotechnol. 2018. V. 9. P. 2832. https://doi.org/10.3762/bjnano.9.264
  4. 4. Мокрушин А.С., Симоненко Т.Л., Симоненко Е.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1336. https://doi.org/10.31857/S0044457X21090063
  5. 5. Wu J., Feng S. // Adv. Funct. Mater. 2016. V. 26. P. 7462. https://doi.org/10.1002/adfm.201603598
  6. 6. Schedin F., Novoselov K.S., Morozov S.V. et al. // Nat. Mater. 2006. V. 6. P. 652. https://doi.org/10.1038/nmat1967
  7. 7. Chen C.W., Hung S.C. // Appl. Phys. Lett. 2011. V. 99. P. 243502. https://doi.org/10.1063/1.3668105
  8. 8. Yu K., Wang P., Lu G. et al. // J. Phys. Chem. Lett. 2011. V. 2. P. 537. https://doi.org/10.1021/jz200087w
  9. 9. Dutta D., Hazra A., Hazra S.K. et al. // Meas. Sci. Technol. 2015. V. 26. P. 115104. https://doi.org/10.1088/0957-0233/26/11/115104
  10. 10. Yun J., Lim Y., Jang G.-N. et al. // Nano Energy. 2015. V. 19. P. 401. https://doi.org/10.1016/j.nanoen.2015.11.023
  11. 11. Yavari F., Castillo E. // Appl. Phys. Lett. 2012. V. 100. P. 203120. https://doi.org/10.1063/1.4720074
  12. 12. Hwang S., Lim J., Park H.-G. et al. // Curr. Appl. Phys. 2012. V. 12. P. 1017. https://doi.org/10.1016/j.cap.2011.12.021
  13. 13. Zhang Y.H., Chen Y.B. // Nanotechnology. 2009. V. 20. № 18. P. 185504. https://doi.org/10.1088/0957-4484/20/18/185504
  14. 14. Dai J., Yuan J. // Appl. Phys. Lett. 2009. V. 95. P. 232105. https://doi.org/10.1063/1.3272008
  15. 15. Salehikhojin A., Esreada D., Lin K.P. et al. // Adv. Mater. 2012. V. 24. P. 53. https://doi.org/10.1002/adma.201102663
  16. 16. Zhang X., Yu L., Gui Y. et al. // Appl. Surf. Sci. 2016. V. 367. P. 259. https://doi.org/10.1016/j.apsusc.2016.01.168
  17. 17. Zhang H., Fan L., Dong H. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 8652. https://doi.org/10.1021/acsami.5b11872
  18. 18. Ricciardella F., Vollebregt S. // Nanoscale. 2017. V. 9. P. 6085. https://doi.org/10.1039/C7NR01120B
  19. 19. Lu Y., Dan Y. // Nano Lett. 2009. V. 9. P. 1472. https://doi.org/10.1021/nl8033637
  20. 20. Zhang L., Li C. // J. Mater. Chem. 2012. V. 22. P. 8438. https://doi.org/10.1039/C2JM16552J
  21. 21. Huang X., Hu N., Gao R. et al. // J. Mater. Chem. 2012. V. 22. P. 22488. https://doi.org/10.1039/C2JM34340A
  22. 22. Zou Y., Wang Q., Xiang C. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 5396. https://doi.org/10.1016/j.ijhydene.2016.02.023
  23. 23. Simon I., Haiduk Yu., Mülhaupt R. et al. // Nano Materials Sci. 2021. V. 3. P. 412. https://doi.org/10.1016/j.nanoms.2021.03.004
  24. 24. Zhang Z., Zou R. // J. Mater. Chem. 2011. V. 21. P. 17360. https://doi.org/10.1039/C1JM12987B
  25. 25. Yi J., Lee J.M. // Sens. Actuators, B: Chem. 2011. V. 155. P. 264. https://doi.org/10.1016/j.snb.2010.12.033
  26. 26. Liu S., Yu B., Zhang H. et al. // Sens. Actuators, B: Chem. 2014. V. 202. P. 272. https://doi.org/10.1016/j.snb.2014.05.086
  27. 27. Wang C., Zhu J., Liang Sh. et al. // J. Mater. Chem. A. 2014. V. 2. P. 18635. https://doi.org/10.1039/C4TA03931A
  28. 28. Singkammo S., Wisitsoraat A., Sriprachuabwong Ch. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 3077. https://doi.org/10.1021/acsami.5b00161
  29. 29. Han M., Liu W., Qu Y. et al. // J. Mater. Sci. Mater. Electron. 2017. V. 28. P. 16973. https://doi.org/10.1007/s10854-017-7619-6
  30. 30. Karaduman I., Er E., Çelikkan H. et al. // J. Alloys Compd. 2017. V. 722. P. 569. https://doi.org/10.1016/j.jallcom.2017.06.152
  31. 31. Kim H.W., Kwon J.Y., Mirzaei A. et al. // Sens. Actuators, B: Chem. 2017. V. 249. P. 590. https://doi.org/10.1016/j.snb.2017.03.149
  32. 32. Wang T., Sun Z., Huang D. et al. // Sens. Actuators, B: Chem. 2017. V. 252. P. 284. https://doi.org/10.1016/j.snb.2017.05.162
  33. 33. Zhou Y., Lin X., Wang Y. et al. // Sens. Actuators, B: Chem. 2017. V. 240. P. 870. https://doi.org/10.1016/j.snb.2016.09.064
  34. 34. Bhati V.S., Ranwa S., Rajamani S. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 11116. https://doi.org/10.1021/acsami.7b17877
  35. 35. Ye Z., Tai H., Guo R. et al. // Appl. Surf. Sci. 2017. V. 419. P. 84. https://doi.org/10.1016/j.apsusc.2017.03.251
  36. 36. Haiduk Yu., Khort A., Lapitskaya V. et al. // Nano-Structures Nano-Objects. 2022. V. 29. № 2. P. 100824. https://doi.org/10.1016/j.nanoso.2021.100824
  37. 37. Кулакова И.И., Лисичкин Г.В. // Журн. общ. химии. 2020. Т. 90. № 10. С. 1601. https://doi.org/10.31857/S0044460X20100157
  38. 38. Korotcenkov G. // Sens. Actuators, B. 2007. V. 121. P. 664. https://doi.org/10.1016/J.SNB.2006.04.092
  39. 39. Zhu Y., Murali S., Cai W. et al. // Adv. Mater. 2010. V. 22. P. 3906. https://doi.org/10.1002/adma.201090156
  40. 40. Новиков В.П., Кирик С.А. // Письма в ЖТФ. 2011. Т. 37. С. 44. https://journals.ioffe.ru/articles/viewPDF/12591
  41. 41. Кричмар С.И., Безпальченко В.М., Мишекин А.А. // Заводская лаборатория. Диагностика материалов. 2008. Т. 74. № 1. С. 21.
  42. 42. Wall M. The Raman Spectroscopy of Graphene and the Determination of Lazer Thickness. Thermo Fisher Scientific, 2011. https://tools.thermofisher.com/content/sfs/brochures/AN52252_E%201111%20LayerThkns_H_1.pdf
  43. 43. Gurlo A., Ivanovskaya M., Barsan N. et al. // Sens. Actuators, B: Chem. 1997. V. 44. P. 327. https://doi.org/10.1016/S0925-4005 (97)00199-8
  44. 44. Marezio M. // Acta Crystallogr. 1966. V. 20. P. 72. https://doi.org/10.1107/S0365110X66001749
  45. 45. Ivanovskaya M.I., Ovodok E.A., Kotsikau D.A. // Glass Phys. Chem. 2011. V. 37. № 5. P. 560 https://doi.org/10.1134/S1087659611050051
  46. 46. Поротников Н.В. // Журн. неорган. химии. 1993. Т. 38. № 4. С. 653.
  47. 47. Sobotta H., Neumann H., Kiin G., Riede V. // Cryst. Res. Technol. 1990. V. 25. P. 61. https://doi.org/10.1002/crat.2170250112
  48. 48. Liu Y., Ma X., Wang Sh., Gong J. // Appl. Catal. B. 2007. V. 77. P. 125. https://doi.org/10.1016/j.apcatb.2007.07.011
  49. 49. Haiduk Yu.S., Khort A.A., Lapchuk N.M. et al. // J. Solid State Chem. 2019. V. 273. P. 25. https://doi.org/10.1016/j.jssc.2019.02.023
  50. 50. Гайдук Ю.С., Савицкий А.А., Хорт А.А. // Журн. неорган. химии. 2019. Т. 64. № 6. С. 594. https://doi.org/10.1134/S0044457X19060072
  51. 51. Choi S.J., Jang B.-H., Lee S.-J. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 2588. https://doi.org/10.1021/am405088q
  52. 52. Dey A. // Mater. Sci. Eng., B. 2018. V. 229. P. 206. https://doi.org/10.1016/j.mseb.2017.12.036
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library