RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

The Effect of Silver Content in ZnO–Ag Nanoparticles on Their Photochemical and Antibacterial Activity

PII
10.31857/S0044457X22601249-1
DOI
10.31857/S0044457X22601249
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 3
Pages
401-410
Abstract
The development of new materials with antibacterial properties is a promising direction in the field of nanotechnology. In this work, ZnO–Ag nanoparticles with a silver content of 0.1–50 at % have been fabricated by the exploding wire method. ZnO–Ag nanoparticles absorb visible light and destroy the model dye Rhodamine B. The introduction of silver into nanoparticles has made it possible to shift the main absorption edge to 1.59–2.74 eV. The determined optimal content of silver in nanoparticles of 12 at % has ensured the degree of Rhodamine B decoloration by 85% within 60 min of exposure to visible light and has completely stopped the growth of E. coli bacteria at a concentration of 15.6 µg/mL. In addition, nanoparticles containing 12 at % silver have sterilized a sample of natural water contaminated with microorganisms. The results obtained offer an efficient method for the synthesis of antibacterial nanocomposites with heterojunctions employing a high-performance technique for producing nanoparticles, namely, the exploding wire method.
Keywords
фотокатализаторы оксид цинка электрический взрыв проводников антимикробные наночастицы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Kollef M.H., Torres A., Shorr A.F. et al. // Crit. Care Med. 2021. V. 49. № 2. P. 169. https://doi.org/10.1097/CCM.0000000000004783
  2. 2. Gupta A., Mumtaz S., Li C.H. et al. // Chem. Soc. Rev. 2019. V. 48. P. 415. https://doi.org/10.1039/c7cs00748e
  3. 3. Sharmin S., Rahaman M.M., Sarkar C. et al. // Heliyon. 2021. V. 7. № 3. P. e06456. https://doi.org/10.1016/j.heliyon.2021.e06456
  4. 4. Correa M.G., Martínez F.B., Vidalet C.P. et al. // Beilstein J. Nanotechnol. 2020. V. 11. № 1. P. 1450. https://doi.org/10.3762/bjnano.11.129
  5. 5. Jiang W.Y., Ran S.Y. // J. Chem. Phys. 2018. V. 148. № 20. P. 205102. https://doi.org/10.1063/1.5025348
  6. 6. Akter M., Sikder M.T., Rahman M.M. et al. // J. Adv. Res. 2018. V. 9. P. 1. https://doi.org/10.1016/j.jare.2017.10.008
  7. 7. Li H., Zhou X., Huang Y. et al. // Front. Microbiol. 2021. V. 11. P. 622534. https://doi.org/10.3389/fmicb.2020.62253
  8. 8. Borysiewicz M.A. // Crystals. 2019. V. 9. № 10. P. 505. https://doi.org/10.3390/cryst9100505
  9. 9. Alharthi F.A., Alghamdi A.A., Al-Zaqri N. et al. // Scie. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-77426-y
  10. 10. Intaphonga P., Phurangrata A., Yeebua H. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 14. P. 2121. https://doi.org/10.1134/S0036023621140047
  11. 11. Deng Q., Duan X., Ng D.H.L. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 6030. https://doi.org/10.1021/am301682g
  12. 12. Chomkitichai W., Jansanthea P., Channei D. // Russ. J. Inorg. Chem. 2021. V. 66. № 13. P. 1995. https://doi.org/10.1134/S0036023621130027
  13. 13. Dymnikova N.S., Erokhina E.V., Moryganov A.P. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 564. https://doi.org/10.1134/S1070363221030270
  14. 14. Burlibaşa L., Chifiriuc M.C., Lungu M.V. et al. // Arabian J. Chem. 2020. V. 13. № 2. P. 4180. https://doi.org/10.1016/j.arabjc.2019.06.015
  15. 15. Li Z. Zhang F., Meng A. et al. // RSC Adv. 2015. V. 5. № 1. P. 612. https://doi.org/10.1039/C4RA12319K
  16. 16. Thatikayala D., Banothu V., Kim J. et al. // J. Mater. Sci. 2020. V. 31. № 7. P. 5324. https://doi.org/10.1007/s10854-020-03093-4
  17. 17. El-Nahhal I.M., Lee K.M., Hwang S. et al. // Sci. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-61306-6
  18. 18. Zare M., Namratha K., Alghamdi S. et al. // Sci. Rep. 2019. V. 9. № 1. P. 1. https://doi.org/10.1038/s41598-019-44309-w
  19. 19. Tauc J., Grigorovici R., Vancu A. et al. // Phys. Status Solidi. 1966. V. 2. № 15. P. 627. https://doi.org/10.1002/pssb.19660150224
  20. 20. Rani S., Aggarwal M., Kumar M. et al. // Water Sci. 2016. V. 30. № 1. P. 51. https://doi.org/10.1016/j.wsj.2016.04.001
  21. 21. M07-A9 CLSI 2012 “Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard – Ninth Edition”. https://clsi.org/standards/products/microbiology/documents/m07/
  22. 22. Bakina O.V., Glazkova E.A., Pervikov A.V. et al. // J. Mater. Sci.-Mater. Electron. 2021. V. 32. № 8. P. 10623. https://doi.org/10.1007/s10854-019-01684-4
  23. 23. Ferreira N.S., Sasaki J.M., Silva Jr R.S. et al. // Inorg. Chem. 2021. V. 60. № 7. P. 4475. https://doi.org/10.1021/acs.inorgchem.0c03327
  24. 24. Chiu Y.H., Mark Chang T.F., Chen C.Y. et al. // Catalysts. 2019. V. 9. P. 430. https://doi.org/10.3390/catal9050430
  25. 25. Yang J., Luo X. // Appl. Surf. Sci. 2021. V. 542. P. 148724. https://doi.org/10.1016/j.apsusc.2020.148724
  26. 26. Panwar A., Yadav K.L. // Mater. Lett. 2022. V. 309. P. 131469. https://doi.org/10.1016/j.matlet.2021.131469
  27. 27. Kumar T.K.M.P., Mandlimath T.R., Sangeetha P. et al. // RSC Adv. 2015. V. 5. № 130. P 108034. https://doi.org/10.1039/C5RA19945J
  28. 28. Khoshkbejari M., Jafari A., Safari M. // Orient. J. Chem. 2015. V. 31. № 3. P. 1437. https://doi.org/10.13005/ojc/310322
  29. 29. Adhikari S., Banerjee A., Eswar N.K.R. et al. // RSC Adv. 2015. V. 5. № 63. P. 51067. https://doi.org/10.1039/C5RA06406F
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library