RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

PRODUCTION OF FUNCTIONALLY GRADIENT MATERIALS BASED ON SILICON CARBIDE AND HIGH-ALLOY STEEL USING SPARK PLASMA SINTERING TECHNOLOGY

PII
10.31857/S0044457X22601237-1
DOI
10.31857/S0044457X22601237
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
115-132
Abstract
An important scientific task of practical materials science is the production of metal-ceramic composites in the form of functional gradient materials (FGM) for special-purpose products. In this regard, a study was conducted on the application of spark plasma sintering (IPS) technology for the effective diffusion connection of SiC ceramics and high-alloy steel (grade X18R15) to obtain a combined FGM composite. In a comprehensive experimental study, the dynamics of consolidation and changes in the phase composition of dispersed SiC under conditions of different temperatures and heating rates, pressing pressure, and holding time were studied. As a result, the IPS conditions were optimized for obtaining SiC ceramics of high relative density (>82%) and microhardness (>500 HV) of stable phase composition. The physicochemical foundations of the formation of a strong compound of a two-component SiC-ceramic and steel system under IPS conditions without additives and using a mixture of additives in the form of a binder, a reaction binder and a damper (Ti–Ag, Ti–TiH2, Ti–Ag–TiH2 and Ti–Ag/Mo additive systems) have been studied. The structure, composition of ceramics and intermediate (binding and damping) layers, as well as the diffusion of elements at the boundary of the formed compounds in FGM composites, were studied using XRF, SEM and EMF methods. It was found that the Ti–Ag/Mo additive in the ratio of 30 wt. % Ti–70 wt. % Ag and a dense layer of Mo (thickness ~ 2 mm), acting as a damper to compensate for the temperature coefficient of linear expansion, ensure the formation of a connected FGM composite of an integral shape. The presented studies have been implemented for the first time, are promising and require further development in order to gain scientific knowledge of the manufacture of composite products for special purposes.
Keywords
композиты керамика сталь сплавы ФГМ диффузионное соединение электроимпульсное спекание ИПС
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Kieback B., Neubrand A., Riedel H. // Mater. Sci. Eng. A. 2003. V. 362. № 1–2. P. 81. https://doi.org/10.1016/S0921-5093 (03)00578-1
  2. 2. Saleh B., Jiang J., Fathi R. et al. // Compos. Part B. 2020. V. 201. P. 108376. https://doi.org/10.1016/j.compositesb.2020.108376
  3. 3. Sam M., Jojith R., Radhika N. // J. Manuf. Process. 2021. V. 68. P. 1339. https://doi.org/10.1016/S0921-5093 (03)00578-1
  4. 4. Pasha A., B.M.R. // Mater. Today Proc. 2022. V. 52. P. 413. https://doi.org/10.1016/j.matpr.2021.09.077
  5. 5. Ruys A.J., Sutton B.A. // Met. Ceram., Elsevier. 2021. P. 327. https://doi.org/10.1016/B978-0-08-102869-8.00009-4
  6. 6. Martinsen K., Hu S.J., Carlson B.E. // CIRP Ann. 2015. V. 64. P. 679. https://doi.org/10.1016/j.cirp.2015.05.006
  7. 7. Uday M.B., Ahmad-Fauzi M.N., Noor A.M. et al. // Current Issues and Problems in the Joining of Ceramic to Metal. Join. Technol., InTech, 2016. P. 159–193. https://doi.org/10.5772/64524
  8. 8. Zhang Y., Chen Y.K., Yu D.S. et al. // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 16214. https://doi.org/10.1016/j.jmrt.2020.11.088
  9. 9. Hausner S., Wielage B. // Adv. Brazing Sci. Technol. Appl., Woodhead Publishing Limited, 2013. P. 361–393. https://doi.org/10.1533/9780857096500.2.361
  10. 10. Nascimento R.M. do, Martinelli A.E., Buschinelli A.J.A. // Cerâmica. 2003. V. 49. № 312. P. 178. https://doi.org/10.1590/s0366-69132003000400002
  11. 11. Hu Z.Y., Zhang Z.H., Cheng X.W. et al. // Mater. Des. 2020. V. 191. P. 108662. https://doi.org/10.1016/j.matdes.2020.108662
  12. 12. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1697. https://doi.org/10.1134/S0036023619140079
  13. 13. Papynov E.K., Portnyagin A.S., Modin E.B. et al. // Mater. Charact. 2018. V. 145. P. 294. https://doi.org/10.1016/j.matchar.2018.08.044
  14. 14. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1887. https://doi.org/10.1134/S0036023621120172
  15. 15. Shapkin N.P., Papynov E.K., Shichalin O.O. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 629. https://doi.org/10.1134/S0036023621050168
  16. 16. Papynov E.K., Shichalin O.O., Buravlev I.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 263. https://doi.org/10.1134/S0036023620020138
  17. 17. Shichalin O.O., Frolov K.R., Buravlev I.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1245. https://doi.org/10.1134/S0036023620080148
  18. 18. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 4. P. 421. https://doi.org/10.1134/S0036023618040186
  19. 19. Shichalin O.O., Buravlev I.Y., Portnyagin A.S. et al. // J. Alloys Compd. 2020. V. 816. P. 152547. https://doi.org/10.1016/j.jallcom.2019.152547
  20. 20. Shichalin O.O., Buravlev I.Y., Papynov E.K. et al. // Int. J. Refract. Met. Hard Mater. 2022. V. 102. P. 105725. https://doi.org/10.1016/j.ijrmhm.2021.105725
  21. 21. Buravlev I.Y., Shichalin O.O., Papynov E.K. et al. // Int. J. Refract. Met. Hard Mater. 2021. V. 94. P. 105385. https://doi.org/10.1016/j.ijrmhm.2020.105385
  22. 22. Naveen Kumar N., Janaki Ram G.D., Bhattacharya S.S. // Trans. Indian Inst. Met. 2019. V. 72. № 7. P. 1837. https://doi.org/10.1007/s12666-019-01662-8
  23. 23. Tsakiris V., Kappel W., Talpeanu D. et al. // Adv. Mater. Res. 2014. V. 1029. P. 200. https://doi.org/10.4028/www.scientific.net/AMR.1029.200
  24. 24. Okuni T., Miyamoto Y., Abe H. et al. // Ceram. Int. 2014. V. 40. P. 1359. https://doi.org/10.1016/j.ceramint.2013.07.017
  25. 25. Rizzo S., Grasso S., Salvo M. et al. // J. Eur. Ceram. Soc. 2014. V. 34. № 4. P. 903. https://doi.org/10.1016/j.jeurceramsoc.2013.10.028
  26. 26. Miriyev A., Barlam D., Shneck R. et al. // J. Mater. Process. Technol. 2014. V. 214. № 12. P. 2884. https://doi.org/10.1016/j.jmatprotec.2014.06.026
  27. 27. Miriyev A., Stern A., Tuval E. et al. // J. Mater. Process. Technol. 2013. V. 213. № 2. P. 161. https://doi.org/10.1016/j.jmatprotec.2012.09.017
  28. 28. Zhang B., Chen C., He J. et al. // Materials (Basel). 2020. V. 13. № 15. P. 1. https://doi.org/10.3390/ma13153300
  29. 29. Dudina D.V., Matvienko A.A., Sidelnikov A.A. et al. // Mater. Today Proc. 2019. V. 16. P. 187. https://doi.org/10.1016/j.matpr.2019.05.242
  30. 30. Dudina D.V., Matvienko A.A., Sidelnikov A.A. et al. // Metals (Basel). 2018. V. 8. № 7. https://doi.org/10.3390/met8070538
  31. 31. Хениш Г., Рой Р. // Карбид кремния. М., 1972.
  32. 32. Bokhonov B.B., Ukhina A.V., Dudina D.V. et al. // RSC Adv. 2015. V. 5. № 98. P. 80228. https://doi.org/10.1039/C5RA15439A
  33. 33. Bernard–Granger G., Benameur N., Guizard C. et al. // Scr. Mater. 2009. V. 60. № 3. P. 164. https://doi.org/10.1016/j.scriptamat.2008.09.027
  34. 34. Bertrand A., Carreaud J., Delaizir G. et al. // J. Am. Ceram. Soc. 2014. V. 97. № 1. P. 163. https://doi.org/10.1111/jace.12657
  35. 35. Papynov E.K., Shichalin O.O., Mironenko A.Y. et al. // Radiochemistry. 2018. V. 60. № 4. P. 362. https://doi.org/10.1134/S1066362218040045
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library