- PII
- 10.31857/S0044457X22600852-1
- DOI
- 10.31857/S0044457X22600852
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 1
- Pages
- 77-86
- Abstract
- Three-dimensional (3D) computer models of Ag–Cu–Ni and Ag–Cu–Pb isobaric phase diagrams, designed based on 23 and 31 base points, respectively, assembled from 14 and 32 surfaces, 9 and 15 phase fields, respectively, and intended to digitize information on these diagrams, are used to verify the adequacy of interpretation of published isothermal and polythermal sections, both calculated and experimentally studied ones. The geometric features of the phase diagram regions that relate to liquid–liquid miscibility gaps and solid solution decomposition are refined in the 3D models. Mistakes arising from an incorrect imaging of the decay of copper–nickel solid solutions and from discrepancies in the values of the Ag–Cu–Pb ternary eutectic temperature are shown on polythermal sections.
- Keywords
- фазовая диаграмма компьютерное моделирование трехмерная визуализация бессвинцовые припои серебро медь никель свинец
- Date of publication
- 01.01.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 32
References
- 1. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. P. 25. https://doi.org/10.1007/s10973-010-0855-04
- 2. Lutsyk V.I., Zyryanov A.M. // Mater. Res. Soc. Symp. Proc. 2004. V. 804. P. JJ9.18.1.
- 3. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. Р. 894. [Воробьева В.П., Зеленая А.Э., Луцык В.И. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 798.] https://doi.org/10.1134/S003602362106022X
- 4. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I. et al. // J. Phase Equilib. Diffus. 2021. V. 42. P. 1753. https://doi.org/10.1007/s11669-021-00863-3
- 5. Cesaris P.D. // Gazz. Chim. Ital. 1913. V. 25. P. 365 (цит. пo [9, 16]).
- 6. Guertler W., Bergmann A. // Z. Metallkd. 1933. V. 25. P. 53 (цит. пo [9, 16]).
- 7. Prince A. Alloy Phase Equilibria. Amsterdam: Elsevier, 1966.
- 8. Siewert T.A., Heinen R.W. // Metall. Trans. A. 1977. V. 8A. P. 515 (цит. пo [9, 16]).
- 9. Chang Y.A., Goldberg D., Neumann J.P. // J. Phys. Chem. Ref. Data. 1977. V. 6. № 3. P. 621.
- 10. Luo H.-T., Chen S.-W. // J. Mater. Sci. 1996. V. 31. P. 5059.
- 11. Liu X.J., Ohnuma I., Wang C.P. et al. // J. Electron. Mater. 2003. V. 32. № 11. P. 1265. https://doi.org/10.1007/s11664-003-0021-6
- 12. Chiu C.-N., Huang Y.-C., Zi A.-R. et al. // Mater. Trans. 2005. V. 46. № 11. P. 2426. https://doi.org/10.2320/matertrans.46.2426
- 13. Liu X.J., Wang C.P., Gao F. et al. // J. Electron. Mater. 2007. V. 36. № 11. P. 1429. https://doi.org/10.1007/s11664-007-0247-9
- 14. Liu X.J., Gao F., Wang C.P. et al. // J. Electron. Mater. 2008. V. 37. № 2. P. 210. https://doi.org/10.1007/s11664-007-0315-1
- 15. Ohnuma I., Saegusa T., Takaku Y. et al. // J. Electron. Mater. 2009. V. 38. № 1. P. 2. https://doi.org/10.1007/s11664-008-0537-x
- 16. Atlas of Phase Diagrams for Lead-Free Soldering compiled / Eds. Dinsdale A. et al. Brno: Vydavatelstvi KNIHAR, 2008. V. 1. P. 289.
- 17. Парфенова М.Д., Воробьева В.П., Луцык В.И. // Весцi Нацыянальнай акадэмii навук Беларуci. Сер. хімічных навук. 2021. Т. 57. № 1. С. 15. [Parfenova M.D., Vorob’eva V.P., Lutsyk V.I. // Proc. National. Academy of Sciences of Belarus, Chemical. Series. 2021. V. 57. № 1. P. 15. https://doi.org/10.29235/1561-8331-2021-57-1-15-24]
- 18. Hayes F.H., Lukas H.L., Effenberg G., Petzow G. // Z. Metallkd. 1986. V. 77. P. 749. https://www.metallurgy.nist.gov/phase/solder/agcupb.html
- 19. Lee B.-Z., Oh C.-S., Lee D.N. // J. Alloys Compds. 1994. V. 215. P. 293.
- 20. Bolcavage A., Kao C.R., Chen S.-L., Chang Y.A. Thermodynamic Calculation of Phase Stability Between Copper and Lead-Indium Solder, Applications of Thermodynamics in Synthesis and Processing of Material. Warrendale, 1995. P. 171.
- 21. COST MP0602 – Handbook of High-Temperature Lead-Free Solders: Atlas of Phase Diagrams compiled / Eds. Dinsdale A. et al. 2012. V. 1. P. 218.
- 22. Hassam S., Boa D., Benigni P., Rodes J. // Thermochim. Acta. 2010. V. 510. № 1. P. 37. https://doi.org/10.1016/j.tca.2010.06.020
- 23. Ohnuma I., Ishida K. // Tecnol. Metal. Mater. Miner. 2016. V. 13. № 1. P. 46. https://doi.org/10.4322/2176-1523.1085
- 24. Takaku Y., Ohnuma I., Kainuma R. et al. // J. Electron. Mater. 2006. V. 35. № 11. P. 1926. https://doi.org/10.1007/s11664-006-0295-6
- 25. Wang C.P., Liu X.J., Ohnuma I. et al. // Science. 2002. V. 297. № 5583. P. 990. https://doi.org/10.1126/science.1073050
- 26. Zhao J.Z., He J., Hu Z.Q. et al. // Z. Metallkd. 2004. V. 95. № 5. P. 362. https://doi.org/10.3139/146.017967
- 27. Wu M., Ludwig A., Pelzer M. et al. // Adv. Eng. Mater. 2005. V. 7. № 9. P. 846. https://doi.org/10.1002/adem.200500098
- 28. He J., Zhao J.Z., Ratke L. // Acta Mater. 2006. V. 54. № 7. P. 1749. https://doi.org/10.1016/j.actamat.2005.12.023
- 29. Kaptay G. // J. Mater. Sci. 2005. V. 40. P. 2125. https://doi.org/10.1007/s10853-005-1902-2
- 30. Wang C.P., Liu X.J., Kainuma R. et al. // Metal. Mater. Trans. A. 2004. V. 35. № 4. P. 1243. https://doi.org/10.1007/s11661-004-0298-y
- 31. Ternary Alloys. A Comprehensive Compendium of Evaluated Constitutional. Data and Phase Diagrams / Eds. Watson A., Kroupa A. Stuttgart, 2021. V. 20. 554 p.
- 32. Ahmedov E.J., Aliev Z.S., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 538. [Ахмедов Э.Дж., Алиев З.С., Бабанлы Д.М. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 498.] https://doi.org/10.1134/S0036023621040021
- 33. Zaitseva I.Ya., Kovaleva I.S., Fedorov V.A. // Russ. J. Inorg. Chem. 2010. V. 55. № 2. P. 261. [Зайцева И.Я., Ковалева И.С., Федоров В.А. // Журн. неорган. химии. 2010. Т. 55. № 2. С. 297]. https://doi.org/10.1134/S0036023610020191